Search
Close this search box.

Extremely low frequency–electromagnetic fields promote chondrogenic differentiation of adipose-derived mesenchymal stem cells through a conventional genetic program – Scientific Reports

  • Krishnan, Y. & Grodzinsky, A. J. Cartilage diseases. Matrix Biol. 71–72, 51–69 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcacci, M., Filardo, G. & Kon, E. Treatment of cartilage lesions: What works and why?. Injury 44, S11–S15 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Becerra, J. et al. Articular cartilage: Structure and regeneration. Tissue Eng. Part B Rev. 16, 617–627 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cross, M. et al. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 73, 1323–1330 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tong, L. et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 10, 1–17 (2022).

    Article 
    CAS 

    Google Scholar
     

  • McAllister, M. J., Chemaly, M., Eakin, A. J., Gibson, D. S. & McGilligan, V. E. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr. Cartil. 26, 612–619 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maldonado, M. & Nam, J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Res. Int. https://doi.org/10.1155/2013/284873 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loo, S. & Wong, N. Advantages and challenges of stem cell therapy for osteoarthritis (Review). Biomed. Rep. 15, 1–12 (2021).

    Article 

    Google Scholar
     

  • Liu, Y., Wu, J., Zhu, Y. & Han, J. Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin. Exp. Med. 14, 13–24 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine. Growth (Lakeland) 324, 1673–1677 (2010).


    Google Scholar
     

  • Wu, S. C., Chang, J. K., Wang, C. K., Wang, G. J. & Ho, M. L. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 31, 631–640 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Robert, A. W., Marcon, B. H., Dallagiovanna, B. & Shigunov, P. Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: A comparative transcriptome approach. Front. Cell Dev. Biol. 8, 561 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, C., Noel, D., Apparailly, F. & Sany, J. Stem cells for repair of cartilage and bone: The next challenge in osteoarthritis and rheumatoid arthritis. Ann. Rheum. Dis. 60, 305–309 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heng, B. C., Cao, T. & Lee, E. H. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22, 1152–1167 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, C., Dai, J. & Zhang, X. A. Environmental physical cues determine the lineage specification of mesenchymal stem cells. Biochim. Biophys. Acta BBA Gen. Subj. 1850, 1261–1266 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Viganò, M. et al. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J. Orthop. Surg. Res. 11, 163 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saliev, T., Begimbetova, D., Masoud, A.-R. & Matkarimov, B. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog. Biophys. Mol. Biol. 141, 25–36 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross, C. L., Zhou, Y., McCall, C. E., Soker, S. & Criswell, T. L. The use of pulsed electromagnetic field to modulate inflammation and improve tissue regeneration: A review. Bioelectricity 1, 247–259 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthes, R. M. A. F. B. J. H. V. P. V. B. Exposure to static and low frequency electromagnetic fields, biological effects and health consequences (0–100 kHz). Review of the scientific evidence on dosimetry, biological effects, epidemiological observations, and health consequences concerning exposure to static and low frequency electromagnetic fields (0–100 kHz). ETDEWEB (2003).

  • https://www.fda.gov/regulatory-information/search-fda-guidance-documents/developing-and-labeling-in-vitro-companion-diagnostic-devices-specific-group-oncology-therapeutic

  • Polk, C. CRC Handbook of Biological Effects of Electromagnetic Fields (CRC Press, 2019). https://doi.org/10.1201/9781351071017.

    Book 

    Google Scholar
     

  • Consales, C., Merla, C., Marino, C. & Benassi, B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell Biol. 2012, 1–16 (2012).

    Article 

    Google Scholar
     

  • Maziarz, A. et al. How electromagnetic fields can influence adult stem cells: Positive and negative impacts. Stem Cell Res. Ther. 7, 54 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funk, R. H. W., Monsees, T. & Özkucur, N. Electromagnetic effects – From cell biology to medicine. Prog. Histochem. Cytochem. 43, 177–264 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Veronesi, F. et al. Experimentally induced cartilage degeneration treated by pulsed electromagnetic field stimulation; An in vitro study on bovine cartilage. BMC Musculoskelet. Disord. 16, 1–9 (2015).

    Article 

    Google Scholar
     

  • Varani, K. et al. Pulsed electromagnetic field stimulation in osteogenesis and chondrogenesis: Signaling pathways and therapeutic implications. Int. J. Mol. Sci. 22, 1–17 (2021).

    Article 

    Google Scholar
     

  • Chen, C. H. et al. Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro. J. Appl. Physiol. 114, 647–655 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esposito, M. et al. Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo (Brooklyn) 27, 495–500 (2013).

    CAS 

    Google Scholar
     

  • Erickson, G. R. et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 290, 763–769 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Chondrogenic differentiation of human mesenchymal stem cells: A comparison between micromass and pellet culture systems. Biotechnol. Lett. 32, 1339–1346 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biazzo, A., D’Ambrosi, R., Masia, F., Izzo, V. & Verde, F. Autologous adipose stem cell therapy for knee osteoarthritis: Where are we now?. Phys. Sportsmed. 48, 392–399 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, C. L. et al. Collagen II from articular cartilage and annulus fibrosus. Eur. J. Biochem. 213, 1297–1302 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nah, H., Swoboda, B., Birk, D. E. & Kirsch, T. Type IIA procollagen: Expression in developing chicken limb cartilage and human osteoarthritic articular cartilage. Dev. Dyn. 220, 307–322 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian, C. et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1−SMAD1 interaction. Bone Res. 7, 8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J.-L., Duan, L., Zhu, W., Xiong, J. & Wang, D. Extracellular matrix production in vitro in cartilage tissue engineering. J. Transl. Med. 12, 88 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khodabandehloo, F. et al. Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells. J. Cell Mol. Med. 25, 5138–5149 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunziker, E. B. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10, 432–463 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Im, GIl. Regeneration of articular cartilage using adipose stem cells. J. Biomed. Mater. Res. A 104, 1830–1844 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, L., Cai, X., Zhang, S., Karperien, M. & Lin, Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: Perspectives from stem cell biology and molecular medicine. J. Cell Physiol. 228, 938–944 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pak, J., Lee, J. H., Kartolo, W. A. & Lee, S. H. Cartilage regeneration in human with adipose tissue-derived stem cells: Current status in clinical implications. Biomed. Res. Int. 2016, 1–12 (2016).

    Article 

    Google Scholar
     

  • Iorio, J. et al. Ultra-low electromagnetic fields application on in vitro cartilage regeneration: A pilot study to improve treatment of osteoarticular diseases. Appl. Sci. 12, 4116 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, I. S., Otto, F., Zabel, B. & Mundlos, S. Regulation of chondrocyte differentiation by Cbfa1. Mech. Dev. 80, 159–170 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enomoto, H. et al. Cbfa1 is a positive regulatory factor in chondrocyte maturation. J. Biol. Chem. 275, 8695–8702 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura, R. et al. Regulation of cartilage development and diseases by transcription factors. J. Bone Metab. 24, 147 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aghajanian, P. & Mohan, S. The art of building bone: Emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res. 6, 19 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Q. et al. Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J. Cell Biol. 162, 833–842 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inada, M. et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev. Dyn. 214, 279–290 (1999).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-0177(199904)214:43.0.CO;2-W” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-0177%28199904%29214%3A4%3C279%3A%3AAID-AJA1%3E3.0.CO%3B2-W” aria-label=”Article reference 50″ data-doi=”10.1002/(SICI)1097-0177(199904)214:43.0.CO;2-W”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genç, D. et al. Synovial fluid niche promoted differentiation of dental follicle mesenchymal stem cells toward chondrogenesis in rheumatoid arthritis. Arch. Rheumatol. 37, 94–109 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kondo, M. et al. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheumatol. 67, 1250–1260 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liboff, A. R. Ion cyclotron resonance interactions in living systems. SIBE Convegno Nazionale Società Italiana Biofisica Elettrodinamica ATTI IV PAVIA 19, 1–14 (2013).


    Google Scholar
     

  • Liboff, A. R. Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 13, 99–102 (1985).

    Article 

    Google Scholar
     

  • Kavand, H., Lintel, H. & Renaud, P. Efficacy of pulsed electromagnetic fields and electromagnetic fields tuned to the ion cyclotron resonance frequency of Ca2+ on chondrogenic differentiation. J. Tissue Eng. Regen. Med. 13, 799–811 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt-Rohlfing, B., Silny, J., Woodruff, S. & Gavenis, K. Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix. Rheumatol. Int. 28, 971–977 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Low-frequency electromagnetic fields combined with tissue engineering techniques accelerate intervertebral fusion. Stem Cell Res. Ther. 12, 143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zerillo, L. et al. Antibiofilm and repair activity of ozonated oil in liposome. Microb. Biotechnol. 15, 1422–1433 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latest Intelligence