Search
Close this search box.

Differential Smad2/3 linker phosphorylation is a crosstalk mechanism of Rho/ROCK and canonical TGF-β3 signaling in tenogenic differentiation – Scientific Reports

  • Campbell, B. H., Agarwal, C. & Wang, J.H.-C. TGF-beta1, TGF-beta3, and PGE(2) regulate contraction of human patellar tendon fibroblasts. Biomech. Model. Mechanobiol. 2(4), 239–245. https://doi.org/10.1007/s10237-004-0041-z (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juneja, S. C., Schwarz, E. M., O’Keefe, R. J. & Awad, H. A. Cellular and molecular factors in flexor tendon repair and adhesions: A histological and gene expression analysis. Connect. Tissue Res. 54(3), 218–226. https://doi.org/10.3109/03008207.2013.787418 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, M., Foreman, D. M. & Ferguson, M. W. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 108(Pt 3), 985–1002. https://doi.org/10.1242/jcs.108.3.985 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda, T. et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr. Biol. CB 21(11), 933–941. https://doi.org/10.1016/j.cub.2011.04.007 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, S. P. et al. Growth factor-mediated tenogenic induction of multipotent mesenchymal stromal cells is altered by the microenvironment of tendon matrix. Cell Transpl. 27(10), 1434–1450. https://doi.org/10.1177/0963689718792203 (2018).

    Article 

    Google Scholar
     

  • Xu, T., Wu, M., Feng, J., Lin, X. & Gu, Z. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int. J. Mol. Med. 30(5), 1119–1125. https://doi.org/10.3892/ijmm.2012.1107 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doll, C. U., Niebert, S. & Burk, J. Mesenchymal stromal cells adapt to chronic tendon disease environment with an initial reduction in matrix remodeling. Int. J. Mol. Sci. 22(23), 12798. https://doi.org/10.3390/ijms222312798 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burk, J. et al. Induction of tenogenic differentiation mediated by extracellular tendon matrix and short-term cyclic stretching. Stem Cells Int. https://doi.org/10.1155/2016/7342379 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maharam, E. et al. Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation. Bone Res. 3, 15015. https://doi.org/10.1038/boneres.2015.15 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, B. et al. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J. Cell. Physiol. 227(6), 2722–2729. https://doi.org/10.1002/jcp.23016 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S., Lee, J. Y., Hwang, C., Shin, J. H. & Park, Y. Inhibition of rho-associated protein kinase increases the angiogenic potential of mesenchymal stem cell aggregates via paracrine effects. Tissue Eng. Part A 22(3–4), 233–243. https://doi.org/10.1089/ten.TEA.2015.0289 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium. Stem Cell Res. Ther. 6(1), 17. https://doi.org/10.1186/s13287-015-0008-2 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melzer, M. et al. Rho/ROCK inhibition promotes TGF-β3-induced tenogenic differentiation in mesenchymal stromal cells. Stem Cells Int. 2021, 8284690. https://doi.org/10.1155/2021/8284690 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezaei, H. B., Kamato, D., Ansari, G., Osman, N. & Little, P. J. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Clin. Exp. Pharmacol. Physiol. 39(8), 661–667. https://doi.org/10.1111/j.1440-1681.2011.05592.x (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Development 13(7), 804–816. https://doi.org/10.1101/gad.13.7.804 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuzaki, K. Smad phosphoisoform signaling specificity: The right place at the right time. Carcinogenesis 32(11), 1578–1588. https://doi.org/10.1093/carcin/bgr172 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamato, D. et al. Smad linker region phosphorylation is a signalling pathway in its own right and not only a modulator of canonical TGF-β signalling. Cell. Mol. Life Sci. 77(2), 243–251. https://doi.org/10.1007/s00018-019-03266-3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, H. et al. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation. Biomed. Rep. 2(6), 787–792. https://doi.org/10.3892/br.2014.323 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamaraju, A. K. & Roberts, A. B. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J. Biol. Chem. 280(2), 1024–1036. https://doi.org/10.1074/jbc.M403960200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamato, D. & Little, P. J. Smad2 linker region phosphorylation is an autonomous cell signalling pathway: Implications for multiple disease pathologies. Biomed. Pharmacother. 124, 109854. https://doi.org/10.1016/j.biopha.2020.109854 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Transforming growth factor-β signalling pathway in tendon healing. Growth Factors (Chur, Switzerland) 40(3–4), 98–107. https://doi.org/10.1080/08977194.2022.2082294 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, K. A., Pietenpol, J. A. & Moses, H. L. A tale of two proteins: Differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J. Cell. Biochem. 101(1), 9–33. https://doi.org/10.1002/jcb.21255 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, S. P., Burk, J., Brehm, W. & Troillet, A. MSC in tendon and joint disease: The context-sensitive link between targets and therapeutic mechanisms. Front. Bioeng. Biotechnol. 10, 855095. https://doi.org/10.3389/fbioe.2022.855095 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huveneers, S. & Danen, E. H. J. Adhesion signalling—Crosstalk between integrins, Src and Rho. J. Cell Sci. 122(Pt 8), 1059–1069. https://doi.org/10.1242/jcs.039446 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woods, A., Wang, G. & Beier, F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem. 280(12), 11626–11634. https://doi.org/10.1074/jbc.M409158200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Browne, J. A., Liu, X., Schnaper, H. W. & Hayashida, T. Serine-204 in the linker region of Smad3 mediates the collagen-I response to TGF-β in a cell phenotype-specific manner. Exp. Cell Res. 319(19), 2928–2937. https://doi.org/10.1016/j.yexcr.2013.07.013 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthet, E. et al. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 31(9), 1475–1483. https://doi.org/10.1002/jor.22382 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Katzel, E. B. et al. Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 29(5), 684–693. https://doi.org/10.1002/jor.21235 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Furumatsu, T., Tsuda, M., Taniguchi, N., Tajima, Y. & Asahara, H. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J. Biol. Chem. 280(9), 8343–8350. https://doi.org/10.1074/jbc.M413913200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alliston, T., Choy, L., Ducy, P., Karsenty, G. & Derynck, R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 20(9), 2254–2272. https://doi.org/10.1093/emboj/20.9.2254 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, R. I. & Snedeker, J. G. Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31(30), 7695–7704. https://doi.org/10.1016/j.biomaterials.2010.06.046 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo, C. K. & Tuan, R. S. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng. Part A 14(10), 1615–1627. https://doi.org/10.1089/ten.tea.2006.0415 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kishore, V., Bullock, W., Sun, X., van Dyke, W. S. & Akkus, O. Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads. Biomaterials 33(7), 2137–2144. https://doi.org/10.1016/j.biomaterials.2011.11.066 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barsby, T., Bavin, E. P. & Guest, D. J. Three-dimensional culture and transforming growth factor beta3 synergistically promote tenogenic differentiation of equine embryo-derived stem cells. Tissue Eng. Part A 20(19–20), 2604–2613. https://doi.org/10.1089/ten.TEA.2013.0457 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khyrul, W. A. K. M., LaLonde, D. P., Brown, M. C., Levinson, H. & Turner, C. E. The integrin-linked kinase regulates cell morphology and motility in a rho-associated kinase-dependent manner. J. Biol. Chem. 279(52), 54131–54139. https://doi.org/10.1074/jbc.M410051200 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, H., McCullough, C. M. & Stegemann, J. P. The role of ERK signaling in protein hydrogel remodeling by vascular smooth muscle cells. Biomaterials 28(26), 3824–3833. https://doi.org/10.1016/j.biomaterials.2007.05.007 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, Y. et al. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomaterialia 88, 86–101. https://doi.org/10.1016/j.actbio.2019.02.015 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, B., Xu, Q. & Liu, W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioactive Mater. 15, 82–102. https://doi.org/10.1016/j.bioactmat.2021.12.005 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Franke, K. et al. Topologically defined composites of collagen types I and V as in vitro cell culture scaffolds. Acta Biomaterialia 10(6), 2693–2702 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogel, S. et al. Remodeling of three-dimensional collagen I matrices by human bone marrow stromal cells during osteogenic differentiation in vitro. ACS Appl. Bio Mater. 3(10), 6967–6978 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng, R., et al. Material Stiffness in Cooperation with Macrophage Paracrine Signals Determines the Tenogenic Differentiation of Mesenchymal Stem Cells. Advanced science (Weinheim, Baden-Wurttemberg, Germany), e2206814. https://doi.org/10.1002/advs.202206814 (2023).

  • Liu, C. et al. Matrix stiffness regulates the differentiation of tendon-derived stem cells through FAK-ERK1/2 activation. Exp. Cell Res. 373(1–2), 62–70. https://doi.org/10.1016/j.yexcr.2018.08.023 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, Y. et al. Nonwoven-based gelatin/polycaprolactone membrane loaded with ERK inhibitor U0126 for treatment of tendon defects. Stem Cell Res. Ther. 13(1), 5. https://doi.org/10.1186/s13287-021-02679-x (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burch, M. L., Zheng, W. & Little, P. J. Smad linker region phosphorylation in the regulation of extracellular matrix synthesis. Cell. Mol. Life Sci. CMLS 68(1), 97–107. https://doi.org/10.1007/s00018-010-0514-4 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hough, C., Radu, M. & Doré, J. J. E. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PloS One 7(8), e42513. https://doi.org/10.1371/journal.pone.0042513 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, Y.-R.V., Tseng, K.-F., Lai, H.-Y., Lin, C.-H. & Lee, O. K. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J. Bone Miner. Res. 26(4), 730–738. https://doi.org/10.1002/jbmr.278 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schubert, S., Brehm, W., Hillmann, A., Burk, J. (2018) Serum-free human MSC medium supports consistency in human but not in equine adipose-derived multipotent mesenchymal stromal cell culture. Cytometry Part A J. Int. Soc. Analyt. Cytol. 93(1), 60–72. https://doi.org/10.1002/cyto.a.23240.

  • Dominici, M., et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8(4), 315–317. https://doi.org/10.1080/14653240600855905.

  • Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9), e45. https://doi.org/10.1093/nar/29.9.e45 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latest Intelligence