Search
Close this search box.

Generation of ‘semi-guided’ cortical organoids with complex neural oscillations – Nature Protocols

  • Scuderi, S., Altobelli, G., Cimini, V., Coppola, G. & Vaccarino, F. Cell-to-cell adhesion and neurogenesis in human cortical development: a study comparing 2D monolayers with 3D organoid cultures. Stem Cell Rep. 16, 264–280 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Centeno, E., Cimarosti, H. & Bithell, A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol. Neurodegener. 13, 27 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adlakha, Y. Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discov. 9, 221 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grenier, K., Kao, J. & Diamandis, P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol. Psychiatry 25, 254–274 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trujillo, C. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell. Stem Cell. 25, 558–569.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, Y., Cakir, B., Xiang, Y., Sullivan, G. & Park, I. Synthetic analyses of single-cell transcriptome from multiple brain organoids and fetal brain. Cell Rep. 30, 1682–1689 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trujillo, C. et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science 371, eaax2537 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papes, F. et al. Transcription factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat. Commun. 13, 2387 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, T. et al. Defining the nature of human pluripotent stem cell-derived interneurons via single-cell analysis. Stem Cell Rep. 16, 2548–2564 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Delgado, R. et al. Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature 601, 397–403 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zourray, C., Kurian, M., Barral, S. & Lignani, G. Electrophysiological properties of human cortical organoids: current state of the art and future directions. Front. Mol. Neurosci. 15, 839366 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, Y. et al. Fusion of regionally-specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398.e7 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasca, A. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiddes, I. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster, M. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharf, T. et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat. Commun. 13, 4403 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uhlhaas, P., Roux, F., Rodriguez, E., Rotarska-Jagiela, A. & Singer, W. Neural synchrony and the development of cortical networks. Trends Cogn. Sci. 14, 72–80 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • de Hemptinne, C. et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 18, 779–786 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uhlhaas, P. J. & Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, S. et al. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc. Natl Acad. Sci. USA 110, 3107–3112 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, T. & Muotri, A. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol. Psychiatry 28, 83–95 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Samarasinghe, R. et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat. Neurosci. 24, 1488–1500 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavazza, A. ‘Consciousnessoids’: clues and insights from human cerebral organoids for the study of consciousness. Neurosci. Conscious. 7, niab029 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, J. et al. Impact of alcohol exposure on neural development and network formation in human cortical organoids. Mol. Psychiatry 28, 1571–1584 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mesci, P. et al. Modeling neuro–immune interactions during Zika virus infection. Hum. Mol. Genet. 27, 41–52 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schley, L. Meet the scientists connecting lab-grown ‘mini brains’ to robots. Discover Magazine https://www.discovermagazine.com/mind/meet-the-scientists-connecting-lab-grown-mini-brains-to-robots (2019).

  • Marinho, L. et al. The impact of antidepressants on human neurodevelopment: brain organoids as experimental tools. Semin. Cell Dev. Biol. 144, 67–76 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trujillo, C. et al. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol. Med. 13, e12523 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams, J. W., Cugola, F. R. & Muotri, A. R. Brain organoids as tools for modeling human neurodevelopmental disorders. Physiology 34, 365–375 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coelho, L. & Muotri, A. Cortical brain organoid as a model to study microgravity exposure. Artif. Organs 47, 5–7 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Standards document. International Society for Stem Cell Research https://www.isscr.org/standards-document (2023).

  • Lin, M. & Schnitzer, M. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avansini, S. et al. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain 145, 1962–1977 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5, 189ra76 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Duong, T. et al. Comparative AAV–eGFP transgene expression using vector serotypes 1–9, 7m8, and 8b in human pluripotent stem cells, RPEs, and human and rat cortical neurons. Stem Cells Int. 2019, 7281912 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. Overexpressing NeuroD1 reprograms Müller cells into various types of retinal neurons. Neural Regen. Res. 18, 1124–1131 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garita-Hernandez, M. et al. AAV-mediated gene delivery to 3D retinal organoids derived from human induced pluripotent stem cells. Int. J. Mol. Sci. 21, 994 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClements, M. et al. Tropism of AAV vectors in photoreceptor-like cells of human iPSC-derived retinal organoids. Transl. Vis. Sci. Technol. 11, 3 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarowny, L. et al. Bright and high-performance genetically encoded Ca2+ indicator based on mneongreen fluorescent protein. ACS Sens. 5, 1959–1968 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piedra, J. et al. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors. Hum. Gene Ther. Methods 26, 35–42 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puppo, F. et al. All-optical electrophysiology in hiPSC-derived neurons with synthetic voltage sensors. Front. Cell Neurosci. 15, 671549 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukamel, E., Nimmerjahn, A. & Schnitzer, M. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giovannucci, A. et al. CaImAn an open source tool for scalable calcium imaging data analysis. eLife 8, e3817343 (2019).

    Article 

    Google Scholar
     

  • Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giandomenico, S. et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latest Intelligence