{"id":613688,"date":"2024-06-12T20:00:00","date_gmt":"2024-06-13T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/the-brain-of-fetuses-with-congenital-diaphragmatic-hernia-shows-signs-of-hypoxic-injury-with-loss-of-progenitor-cells-neurons-and-oligodendrocytes-scientific-reports\/"},"modified":"2024-06-13T17:15:51","modified_gmt":"2024-06-13T21:15:51","slug":"the-brain-of-fetuses-with-congenital-diaphragmatic-hernia-shows-signs-of-hypoxic-injury-with-loss-of-progenitor-cells-neurons-and-oligodendrocytes-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/the-brain-of-fetuses-with-congenital-diaphragmatic-hernia-shows-signs-of-hypoxic-injury-with-loss-of-progenitor-cells-neurons-and-oligodendrocytes-scientific-reports\/","title":{"rendered":"The brain of fetuses with congenital diaphragmatic hernia shows signs of hypoxic injury with loss of progenitor cells, neurons, and oligodendrocytes – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Zani, A. et al.<\/i> Congenital diaphragmatic hernia. Nat. Rev. Dis. Primers<\/i> 8<\/b>, 37 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vogel, M. et al.<\/i> Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol.<\/i> 35<\/b>, 310\u2013317 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Massolo, A. C. et al.<\/i> Fetal cardiac dimensions in congenital diaphragmatic hernia: Relationship with gestational age and postnatal outcomes. J. Perinatol.<\/i> 41<\/b>, 1651\u20131659 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Harting, M. T. & Lally, K. P. The congenital diaphragmatic hernia study group registry update. Semin. Fetal Neonatal. Med.<\/i> 19<\/b>, 370\u2013375 (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Montalva, L., Raffler, G., Riccio, A., Lauriti, G. & Zani, A. Neurodevelopmental impairment in children with congenital diaphragmatic hernia: Not an uncommon complication for survivors. J. Pediatr. Surg.<\/i> 55<\/b>, 625\u2013634 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Van der Veeken, L. et al.<\/i> Prenatal cerebellar growth is altered in congenital diaphragmatic hernia on ultrasound. Prenat. Diagn.<\/i> 42<\/b>, 330\u2013337 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Van Mieghem, T. et al.<\/i> Fetal cerebral blood flow velocities in congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol.<\/i> 36<\/b>, 452\u2013457 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kosiv, K. A. et al.<\/i> Fetal cerebrovascular impedance is reduced in left congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol.<\/i> 57<\/b>, 386\u2013391 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Machado-Rivas, F. et al.<\/i> Brain growth in fetuses with congenital diaphragmatic hernia. J. Neuroimaging<\/i> 33<\/b>, 617\u2013624 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Radhakrishnan, R. et al.<\/i> Fetal brain morphometry on prenatal magnetic resonance imaging in congenital diaphragmatic hernia. Pediatr. Radiol.<\/i> 49<\/b>, 217\u2013223 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Emam, D. et al.<\/i> Longitudinal MRI evaluation of brain development in fetuses with congenital diaphragmatic hernia around the time of fetal endotracheal occlusion. AJNR Am. J. Neuroradiol.<\/i> 44<\/b>, 205\u2013211 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Iritani, I. Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat. Embryol. (Berl)<\/i> 169<\/b>, 133\u2013139 (1984).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Montalva, L. & Zani, A. Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr. Surg. Int.<\/i> 35<\/b>, 41\u201361 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Baranger, J. et al.<\/i> Blood flow imaging with ultrafast doppler. J. Vis. Exp<\/i> https:\/\/doi.org\/10.3791\/61838<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Baranger, J. et al.<\/i> Adaptive spatiotemporal SVD clutter filtering for ultrafast doppler imaging using similarity of spatial singular vectors. IEEE Trans. Med. Imaging<\/i> 37<\/b>, 1574\u20131586 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Miyata, S. & Morita, S. A new method for visualization of endothelial cells and extravascular leakage in adult mouse brain using fluorescein isothiocyanate. J. Neurosci. Methods<\/i> 202<\/b>, 9\u201316 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Biouss, G. et al.<\/i> Experimental necrotizing enterocolitis induces neuroinflammation in the neonatal brain. J. Neuroinflammation<\/i> 16<\/b>, 97 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hsia, C. C., Hyde, D. M., Ochs, M., Weibel, E. R., ATS\/ERS Joint Task Force on Quantitative Assessment of Lung Structure. An official research policy statement of the American thoracic society\/European respiratory society: Standards for quantitative assessment of lung structure. Am. J. Respir. Crit. Care Med.<\/i> 181<\/b>, 394\u2013418 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Demene, C. et al.<\/i> Functional ultrasound imaging of brain activity in human newborns. Sci. Transl. Med.<\/i> 9<\/b>, eaah6756 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Baranger, J. et al.<\/i> Brain perfusion imaging in neonates. Neuroimage Clin.<\/i> 31<\/b>, 102756 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chipurupalli, S., Kannan, E., Tergaonkar, V., D\u2019Andrea, R. & Robinson, N. Hypoxia induced ER stress response as an adaptive mechanism in cancer. Int. J. Mol. Sci.<\/i> 20<\/b>, 749 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, K. et al.<\/i> Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ.<\/i> 8<\/b>, 367\u2013376 (2001).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schmidt, H., Grune, T., M\u00fcller, R., Siems, W. G. & Wauer, R. R. Increased levels of lipid peroxidation products malondialdehyde and 4-hydroxynonenal after perinatal hypoxia. Pediatr. Res.<\/i> 40<\/b>, 15\u201320 (1996).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guilbert, T. W., Gebb, S. A. & Shannon, J. M. Lung hypoplasia in the nitrofen model of congenital diaphragmatic hernia occurs early in development. Am. J. Physiol. Lung Cell Mol. Physiol.<\/i> 279<\/b>, L1159\u2013L1171 (2000).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Van Tuyl, M. et al.<\/i> Pulmonary surfactant protein A, B, and C mRNA and protein expression in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr. Res.<\/i> 54<\/b>, 641\u2013652 (2003).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhaorigetu, S., Gupta, V. S., Jin, D. & Harting, M. T. Cardiac energy metabolism may play a fundamental role in congenital diaphragmatic hernia-associated ventricular dysfunction. J. Mol. Cell Cardiol.<\/i> 157<\/b>, 14\u201316 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Van der Veeken, L. et al.<\/i> Brain development is altered in rabbit fetuses with congenital diaphragmatic hernia. Prenat. Diagn.<\/i> 43<\/b>, 359\u2013369 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Deffieux, T., Demen\u00e9, C. & Tanter, M. Functional ultrasound imaging: A new imaging modality for neuroscience. Neuroscience<\/i> 474<\/b>, 110\u2013121 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Montaldo, P. et al.<\/i> Whole blood gene expression reveals specific transcriptome changes in neonatal encephalopathy. Neonatology<\/i> 115<\/b>, 68\u201376 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maggiotto, L. V., Sondhi, M., Shin, B. C., Garg, M. & Devaskar, S. U. Circulating blood cellular glucose transporters\u2014surrogate biomarkers for neonatal hypoxic-ischemic encephalopathy assessed by novel scoring systems. Mol. Genet. Metab.<\/i> 127<\/b>, 166\u2013173 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ream, M., Ray, A. M., Chandra, R. & Chikaraishi, D. M. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am. J. Physiol. Regul. Integr. Comp. Physiol.<\/i> 295<\/b>, R583\u2013R595 (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kanaan, A., Farahani, R., Douglas, R. M., Lamanna, J. C. & Haddad, G. G. Effect of chronic continuous or intermittent hypoxia and reoxygenation on cerebral capillary density and myelination. Am. J. Physiol. Regul. Integr. Comp. Physiol.<\/i> 290<\/b>, R1105\u2013R1114 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Boero, J. A., Ascher, J., Arregui, A., Rovainen, C. & Woolsey, T. A. Increased brain capillaries in chronic hypoxia. J. Appl. Physiol.<\/i> 86<\/b>, 1211\u20131219 (1999).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Harik, S. I., Hritz, M. A. & LaManna, J. C. Hypoxia-induced brain angiogenesis in the adult rat. J. Physiol.<\/i> 485<\/b>, 525\u2013530 (1995).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature<\/i> 359<\/b>, 843\u2013845 (1992).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, H. S., Han, J., Bai, H. J. & Kim, K. W. Brain angiogenesis in developmental and pathological processes: Regulation, molecular and cellular communication at the neurovascular interface. FEBS J.<\/i> 276<\/b>, 4622\u20134635 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, A., Dubey, S., Varney, M. L., Dave, B. J. & Singh, R. K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol.<\/i> 170<\/b>, 3369\u20133376 (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Broughton, B. R., Reutens, D. C. & Sobey, C. G. Apoptotic mechanisms after cerebral ischemia. Stroke<\/i> 40<\/b>, e331\u2013e339 (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Haddad, G. G. & Jiang, C. O2 deprivation in the central nervous system: On mechanisms of neuronal response, differential sensitivity and injury. Prog. Neurobiol.<\/i> 40<\/b>, 277\u2013318 (1993).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kleuskens, D. G. et al.<\/i> Pathophysiology of cerebral hyperperfusion in term neonates with hypoxic-ischemic encephalopathy: A systematic review for future research. Front. Pediatr.<\/i> 9<\/b>, 631258 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rees, S., Harding, R. & Walker, D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int. J. Dev. Neurosci.<\/i> 29<\/b>, 551\u2013563 (2011).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jakovcevski, I. & Zecevic, N. Sequence of oligodendrocyte development in the human fetal telencephalon. Glia<\/i> 49<\/b>, 480\u2013491 (2005).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yuen, T. J. et al.<\/i> Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell<\/i> 158<\/b>, 383\u2013396 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tran, N. T. et al.<\/i> Creatine supplementation reduces the cerebral oxidative and metabolic stress responses to acute in utero hypoxia in the late-gestation fetal sheep. J. Physiol.<\/i> 600<\/b>, 3193\u20133210 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Muccini, A. M. et al.<\/i> The effects of in utero fetal hypoxia and creatine treatment on mitochondrial function in the late gestation fetal sheep brain. Oxid. Med. Cell Longev.<\/i> 2022<\/b>, 3255296 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lawrence, K. M. et al.<\/i> Chronic intrauterine hypoxia alters neurodevelopment in fetal sheep. J. Thorac. Cardiovasc. Surg.<\/i> 157<\/b>, 1982\u20131991 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lawrence, K. M. et al.<\/i> Prenatal hypoxemia alters microglial morphology in fetal sheep. J. Thorac. Cardiovasc. Surg.<\/i> 159<\/b>, 270\u2013277 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Miller, S. L., Huppi, P. S. & Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol.<\/i> 594<\/b>, 807\u2013823 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pham, H. et al.<\/i> Impact of inhaled nitric oxide on white matter damage in growth-restricted neonatal rats. Pediatr. Res.<\/i> 77<\/b>, 563\u2013569 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Basilious, A., Yager, J. & Fehlings, M. G. Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: A systematic review. Dev. Med. Child. Neurol.<\/i> 57<\/b>, 420\u2013430 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rees, S. & Inder, T. Fetal and neonatal origins of altered brain development. Early Hum. Dev.<\/i> 81<\/b>, 753\u2013761 (2005).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Byrne, F. A. et al.<\/i> Severe left diaphragmatic hernia limits size of fetal left heart more than does right diaphragmatic hernia. Ultrasound Obstet. Gynecol.<\/i> 46<\/b>, 688\u2013694 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nour, A. L. A. et al.<\/i> The myocardial capillary network is altered in congenital diaphragmatic hernia in the fetal rabbit model. Braz. J. Med. Biol. Res.<\/i> 56<\/b>, e12521 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sun, L. et al.<\/i> Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation<\/i> 131<\/b>, 1313\u20131323 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kelly, C. J. et al.<\/i> Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery. Sci. Rep.<\/i> 7<\/b>, 15088 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Harrison, M. R. et al.<\/i> Correction of congenital diaphragmatic hernia in utero: VI. Hard-earned lessons. J. Pediatr. Surg.<\/i> 28<\/b>, 1411\u20131418 (1993).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Deprest, J. A. et al.<\/i> Randomized trial of fetal surgery for severe left diaphragmatic hernia. N. Engl. J. Med.<\/i> 385<\/b>, 107\u2013118 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, F. T., Marini, D., Seed, M. & Sun, L. Maternal hyperoxygenation in congenital heart disease. Transl. Pediatr.<\/i> 10<\/b>, 2197\u20132209 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hogan, W. J. et al.<\/i> Fetal cerebrovascular response to maternal hyperoxygenation in congenital heart disease: Effect of cardiac physiology. Ultrasound Obstet. Gynecol.<\/i> 57<\/b>, 769\u2013775 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    You, W. et al.<\/i> Hemodynamic responses of the placenta and brain to maternal hyperoxia in fetuses with congenital heart disease by using blood oxygen-level dependent MRI. Radiology<\/i> 294<\/b>, 141\u2013148 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Markert, F. & Storch, A. Hyperoxygenation during mid-neurogenesis accelerates cortical development in the fetal mouse brain. Front. Cell Dev. Biol.<\/i> 10<\/b>, 732682 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wagenf\u00fchr, L., Meyer, A. K., Braunschweig, L., Marrone, L. & Storch, A. Brain oxygen tension controls the expansion of outer subventricular zone-like basal progenitors in the developing mouse brain. Development<\/i> 142<\/b>, 2904\u20132915 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chand, K., Nano, R., Wixey, J. & Patel, J. Stem cell therapy for neuroprotection in the growth-restricted newborn. Stem Cells Transl. Med.<\/i> 11<\/b>, 372\u2013382 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Matei, A. C., Antounians, L. & Zani, A. Extracellular vesicles as a potential therapy for neonatal conditions: State of the art and challenges in clinical translation. Pharmaceutics<\/i> 11<\/b>, 404 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n