{"id":611403,"date":"2024-06-11T20:00:00","date_gmt":"2024-06-12T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/resting-state-neurophysiology-of-agonist-antagonist-myoneural-interface-in-persons-with-transtibial-amputation-scientific-reports\/"},"modified":"2024-06-11T20:22:21","modified_gmt":"2024-06-12T00:22:21","slug":"resting-state-neurophysiology-of-agonist-antagonist-myoneural-interface-in-persons-with-transtibial-amputation-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/resting-state-neurophysiology-of-agonist-antagonist-myoneural-interface-in-persons-with-transtibial-amputation-scientific-reports\/","title":{"rendered":"Resting state neurophysiology of agonist\u2013antagonist myoneural interface in persons with transtibial amputation – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Molina, C., Faulk, J. Lower Extremity Amputation<\/i>. (StatPearls Publishing LLC, 2022), pp. 1\u201323.<\/p>\n<\/li>\n

  • \n

    Dillingham, T., Pezzin, L. & Shore, A. Reamputation, mortality, and health care costs among persons with dysvascular lower-limb amputations. Arch. Phys. Med. Rehabil.<\/i> 86<\/b>, 480\u2013486 (2005).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sauter, C. N., Pezzin, L. E. & Dillingham, T. R. Functional outcomes of persons who underwent dysvascular lower extremity amputations: effect of postacute rehabilitation setting. Am. J. Phys. Med. Rehabil.<\/i> 92<\/b>(4), 287\u2013296 (2013).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    M. Edwards, Clinician’s Guide to Assistive Technology<\/i>. (2002), pp. 297\u2013310.<\/p>\n<\/li>\n

  • \n

    List, E., Krijgh, D., Enrico, M. & Coert, J. Prevalence of residual limb pain and symptomatic neuromas after lower extremity amputation: a systematic review and meta-analysis. Pain.<\/i> 162<\/b>(7), 1906\u20131913 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Penna, A., Konstantatos, A., Cranwell, W., Paul, E. & Bruscino-Raiola, F. Incidence and associations of painful neuroma in a contemporary cohort of lower-limb amputees. ANZ J. Surg.<\/i> 88<\/b>(5), 491\u2013496 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Flor, H., Nikolajsen, L. & Jensen, T. Phantom limb pain: A case of maladaptive CNS plasticity?. Nat. Rev. Neurosci.<\/i> 7<\/b>, 873\u2013771 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schone, H. et al.<\/i> Making sense of phantom limb pain. J. Neurol. Neurosurg. Psychiatry.<\/i> 93<\/b>, 833\u2013843 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Srinivasan, S. et al.<\/i> On prosthetic control: A regenerative agonist-antagonist myoneural interface. Sci. Robot.<\/i> 2<\/b>, 6 (2017).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Srinivasan, S. et al.<\/i> Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proc. Natl. Acad. Sci. U.S.A.<\/i> 118<\/b>(9), e2019555118 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Srinivasan, S. et al.<\/i> Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs. Sci. Trans. Med.<\/i> 12<\/b>, 573 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Conn.<\/i> 2<\/b>, 125\u2013141 (2012).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Power, J., Schlaggar, B. & Petersen, S. Studying brain organization via spontaneous fMRI signal. Neuron.<\/i> 84<\/b>, 681\u2013696 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, J. et al.<\/i> Brain functional connectivity plasticity within and beyond the sensorimotor network in lower-limb amputees. Front. Hum. Neurosci.<\/i> 12<\/b>, 403 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bramati, I. et al.<\/i> Lower limb amputees undergo long-distance plasticity in sensorimotor functional connectivity. Sci Rep.<\/i> 9<\/b>, 2518 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Menon, V. & Uddin, L. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Function.<\/i> 214<\/b>, 655\u2013667 (2010).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Seeley, W. The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci.<\/i> 39<\/b>, 9878\u20139882 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    C. Henley, Foundations of Neuroscience<\/i>. (Michigan State University Libraries, 2021), Ch. 26.<\/p>\n<\/li>\n

  • \n

    Claret, C. R. et al.<\/i> Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation. J. Neuroeng. and Rehabil.<\/i> 16<\/b>, 115 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Geurts, A. & Mulder, T. Reorganisation of postural control following lower limb amputation: Theoretical considerations and implications for rehabilitation. Physiother. Theory Pract.<\/i> 8<\/b>, 145\u2013157 (1992).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hlavackova, P., Franco, C., Diot, B. & Vuillerme, N. Contribution of each leg to the control of unperturbed bipedal stance in lower limb amputees: New insights using entropy. PLoS One.<\/i> 6<\/b>(5), e19661 (2011).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    N. Carlson, Physiology of Behavior<\/i>. (Pearson, ed. 11, 2014), pp. 255\u2013288.<\/p>\n<\/li>\n

  • \n

    Reed, C. & Caselli, R. The nature of tactile agnosia: A case study. Neuropsychologia.<\/i> 32<\/b>, 527\u2013539 (1994).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wijk, U. & Carlsson, I. Forearm amputees\u2019 views of prosthesis use and sensory feedback. J. Hand. Ther.<\/i> 28<\/b>, 269\u2013278 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Smail, L., Neal, C., Wilkins, C. & Packham, T. Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review. Disabil. Rehabil. Assist. Technol.<\/i> 16<\/b>, 821\u2013830 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rackerby, R., Lukosch, S. & Munro, D. Understanding and measuring the cognitive load of amputees for rehabilitation and prosthesis development. Arch. Rehabil. Res. Clin. Transl.<\/i> 4<\/b>, 100216 (2022).<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Swerdloff, M., Hargrove, L. Quantifying cognitive load using EEG during ambulation and postural tasks. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.<\/i> 2849\u20132852 (2020)<\/p>\n<\/li>\n

  • \n

    Mohan, A. & Vanneste, S. Adaptive and maladaptive neural compensatory consequences of sensory deprivation\u2014from a phantom percept perspective. Prog. Neurobiol.<\/i> 153<\/b>, 1\u201317 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Perez, D., Dwortesky, A., Braga, R., Beeman, M. & Gratton, C. Hemispheric asymmetries of individual differences in functional connectivity. J. Cogn. Neurosci.<\/i> 35<\/b>, 200\u2013225 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wan, B. et al.<\/i> Heritability and cross-species comparisons of human cortical functional organization asymmetry. elife.<\/i> 11<\/b>, e77215 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bekrater-Bodmann, R. Perceptual correlates of successful body\u2013prosthesis interaction in lower limb amputees: psychometric characterisation and development of the Prosthesis Embodiment Scale. Sci. Rep.<\/i> 10<\/b>, 14203 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bekrater-Bodmann, R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front. Neurorobot.<\/i> 14<\/b>, 604376 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Akselrod, M. et al.<\/i> Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: a 7T fMRI study. NeuroImage.<\/i> 159<\/b>, 473\u2013487 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Makin, T. R. et al.<\/i> Network-level reorganisation of functional connectivity following arm amputation. Neuroimage.<\/i> 1<\/b>(114), 217\u201325 (2015).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jiang, G. et al.<\/i> The plasticity of brain gray matter and white matter following lower limb amputation. Neural Plast.<\/i> 2015<\/b>, 1\u201310 (2015).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pazzaglia, M. & Zantedeschi, M. Plasticity and awareness of bodily distortion. Neural Plast.<\/i> 2016<\/b>, 1\u20137 (2016).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Clites, T., Herr, H., Srinivasan, S., Zorzos, A. & Carty, M. The ewing amputation: The first human implementation of the agonist-antagonist myoneural interface. Plast. Reconstr. Surg. Glob.<\/i> 6<\/b>, e1997 (2018).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Clites, T. et al.<\/i> Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med.<\/i> 10<\/b>, eaap8373 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vizioli, L. et al.<\/i> Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat. Commun.<\/i> 12<\/b>, 5181 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Friston, K., B\u00fcchel, C. in Statistical Parametric Mapping<\/i>, K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, Eds. (Elsevier LTD, Oxford, 2007), pp. 492\u2013508.<\/p>\n<\/li>\n

  • \n

    MATLAB and Statistics Toolbox Release, The MathWorks, Inc., Natick, Massachusetts, United States (2012b).<\/p>\n<\/li>\n

  • \n

    Wu, G. R. et al.<\/i> A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal.<\/i> 17<\/b>, 365\u2013374 (2013).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rangaprakash, D., Wu, G. R., Marinazzo, D., Hu, X. & Deshpande, G. Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity. Magn. Reson. Med.<\/i> 80<\/b>, 1697\u20131713 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rangaprakash, D. et al.<\/i> Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies. Neuroimage Clin.<\/i> 16<\/b>, 409\u2013417 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yan, W., Rangaprakash, D. & Deshpande, G. Aberrant hemodynamic responses in autism: Implications for resting State fMRI functional connectivity studies. Neuroimage Clin.<\/i> 19<\/b>, 320\u2013330 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhi, D., King, M., Hernandez-Castillo, C. & Diedrichsen, J. Evaluating brain parcellations using the distance controlled boundary coefficient. Hum. Brain Mapp.<\/i> 43<\/b>, 3706\u20133720 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Power, J. et al.<\/i> Functional network organization of the human brain. Neuron.<\/i> 72<\/b>, 665\u2013678 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Makris, N. et al.<\/i> Decreased Volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res.<\/i> 83<\/b>, 155\u2013171 (2006).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Frazier, J. et al.<\/i> Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry.<\/i> 162<\/b>, 1256\u20131265 (2005).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Desikan, R. et al.<\/i> An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage.<\/i> 31<\/b>, 968\u2013980 (2006).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Goldstein, J. et al.<\/i> Hypothalamic abnormalities in schizophrenia: Sex effects and genetic vulnerability. Biol. Psychiatry.<\/i> 61<\/b>, 935\u2013945 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Buckner, R., Krienen, F., Castellanos, A., Diaz, J. & Yeo, B. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophys.<\/i> 106<\/b>, 2322\u20132345 (2011).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage.<\/i> 52<\/b>, 1059\u20131069 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xia, M., Wang, J. & He, Y. BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One.<\/i> 8<\/b>, e68910 (2013).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n