{"id":610841,"date":"2024-06-10T20:00:00","date_gmt":"2024-06-11T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/purification-characterization-and-three-dimensional-structure-prediction-of-multicopper-oxidase-laccases-from-trichoderma-lixii-flu1-and-talaromyces-pinophilus-flu12-scientific-reports-2\/"},"modified":"2024-06-11T03:00:34","modified_gmt":"2024-06-11T07:00:34","slug":"purification-characterization-and-three-dimensional-structure-prediction-of-multicopper-oxidase-laccases-from-trichoderma-lixii-flu1-and-talaromyces-pinophilus-flu12-scientific-reports-2","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/purification-characterization-and-three-dimensional-structure-prediction-of-multicopper-oxidase-laccases-from-trichoderma-lixii-flu1-and-talaromyces-pinophilus-flu12-scientific-reports-2\/","title":{"rendered":"Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12 – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Mishra, S. et al.<\/i> Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol.<\/i> 9<\/b>, 1\u201326. https:\/\/doi.org\/10.3389\/fbioe.2021.632059<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zafra, G. & Cort\u00e9s-Espinosa, D. V. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species<\/i>: A mini review. Environ. Sci. Pollut. Res.<\/i> 22<\/b>, 19426\u201319433. https:\/\/doi.org\/10.1007\/s11356-015-5602-4<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Frisvad, J. C. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front. Microbiol.<\/i> 5<\/b>, 1\u20137. https:\/\/doi.org\/10.3389\/fmicb.2014.00773<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mate, D. M. & Alcalde, M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechnol.<\/i> 10<\/b>, 1457\u20131467. https:\/\/doi.org\/10.1111\/1751-7915.12422<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhuo, R. & Fan, F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Sci. Total Environ.<\/i> 778<\/b>, 146132. https:\/\/doi.org\/10.1016\/j.scitotenv.2021.146132<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, L., Zhang, X., Zhang, M., Zhu, Y. & Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod.<\/i> 354<\/b>, 131681. https:\/\/doi.org\/10.1016\/j.jclepro.2022.131681<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar, A. & Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon<\/i> 6<\/b>, e03170. https:\/\/doi.org\/10.1016\/j.heliyon.2020.e03170<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, P. et al.<\/i> Degradation of several polycyclic aromatic hydrocarbons by Laccase in reverse micelle system. Sci. Total Environ.<\/i> 708<\/b>, 134970\u2013134970. https:\/\/doi.org\/10.1016\/j.scitotenv.2019.134970<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, S., Zhu, M., Guo, X., Yang, B. & Zhuo, R. Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants. Ecotoxicol. Environ. Saf.<\/i> 254<\/b>, 114697. https:\/\/doi.org\/10.1016\/j.ecoenv.2023.114697<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, X. et al.<\/i> Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. Bioresour. Technol.<\/i> 395<\/b>, 130337. https:\/\/doi.org\/10.1016\/j.biortech.2024.130337<\/a> (2024).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Falade, A., Jaouani, A., Mabinya, L., Okoh, A. & Nwodo, U. Exoproduction and molecular characterization of peroxidase from Ensifer adhaerens<\/i>. Appl. Sci.<\/i> 9<\/b>, 1\u201315. https:\/\/doi.org\/10.3390\/app9153121<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sondhi, S., Kaur, R. & Madan, J. Purification and characterization of a novel white highly thermo stable Laccase from a novel Bacillus<\/i> sp. MSK-01 having potential to be used as anticancer agent. Int. J. Biol. Macromol.<\/i> 170<\/b>, 232\u2013238. https:\/\/doi.org\/10.1016\/j.ijbiomac.2020.12.082<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhu, Y. et al.<\/i> Laccase directed lignification is one of the major processes associated with the defense response against pythium ultimum infection in apple roots. Front. Plant Sci.<\/i> 12<\/b>, 1862\u20131862. https:\/\/doi.org\/10.3389\/FPLS.2021.629776\/BIBTEX<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, C. H. et al.<\/i> Involvement of Laccase2 in cuticle sclerotization of the whitefly, Bemisia tabaci<\/i> middle East-Asia minor 1. Insects<\/i> 13<\/b>, 471. https:\/\/doi.org\/10.3390\/insects13050471<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev.<\/i> 32<\/b>, 236\u2013248. https:\/\/doi.org\/10.1016\/J.FBR.2018.02.003<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yan, L., Xu, R., Bian, Y., Li, H. & Zhou, Y. Expression profile of Laccase gene family in white-rot basidiomycete Lentinula edodes<\/i> under different environmental stresses. Genes<\/i> 10<\/b>, 1045\u20131045. https:\/\/doi.org\/10.3390\/GENES10121045<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhu, X. & Williamson, P. R. Role of Laccase in the biology and virulence of Cryptococcus neoformans<\/i>. FEMS Yeast Res.<\/i> 5<\/b>, 1\u201310. https:\/\/doi.org\/10.1016\/J.FEMSYR.2004.04.004<\/a> (2004).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Williamson, P. R. Role of Laccase in the virulence of Talaromyces marneffei<\/i>: A common link between AIDS-related fungal pathogens?. Virulence<\/i> 7<\/b>, 627\u2013629. https:\/\/doi.org\/10.1080\/21505594.2016.1198867<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Santo, M., Weitsman, R. & Sivan, A. The role of the copper-binding enzyme\u2013Laccase\u2013in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber<\/i>. Int. Biodeteriorat. Biodegrad.<\/i> 84<\/b>, 204\u2013210. https:\/\/doi.org\/10.1016\/j.ibiod.2012.03.001<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chauhan, P. S., Goradia, B. & Saxena, A. Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech<\/i> 7<\/b>, 323\u2013323. https:\/\/doi.org\/10.1007\/s13205-017-0955-7<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Arregui, L. et al.<\/i> Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Fact.<\/i> https:\/\/doi.org\/10.1186\/s12934-019-1248-0<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ali, W. B. et al.<\/i> Enzyme properties of a laccase obtained from the transcriptome of the marine-derived fungus Stemphylium lucomagnoense<\/i>. Int. J. Mol. Sci.<\/i> 21<\/b>, 1\u201316. https:\/\/doi.org\/10.3390\/ijms21218402<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Radveikien\u0117, I., Vid\u017ei\u016bnait\u0117, R., Me\u0161kien\u0117, R., Me\u0161kys, R. & \u010casait\u0117, V. Characterization of a yellow Laccase from Botrytis cinerea<\/i> 241. J. Fungi<\/i> 7<\/b>, 1\u201316. https:\/\/doi.org\/10.3390\/jof7020143<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Agrawal, K. & Verma, P. Multicopper oxidase laccases with distinguished spectral properties: A new outlook. Heliyon<\/i> 6<\/b>, e03972\u2013e03972. https:\/\/doi.org\/10.1016\/j.heliyon.2020.e03972<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mot, A. C. et al.<\/i> \u201cYellow\u201d Laccase from Sclerotinia sclerotiorum<\/i> is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct. Plos One<\/i> 15<\/b>, e0225530. https:\/\/doi.org\/10.1371\/journal.pone.0225530<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sekretaryova, A., Jones, S. M. & Solomon, E. I. O2<\/sub> Reduction to water by high potential multicopper Oxidases: Contributions of the T1 copper site potential and the local environment of the trinuclear copper cluster. J. Am. Chem. Soc.<\/i> 141<\/b>, 11304\u201311314. https:\/\/doi.org\/10.1021\/jacs.9b05230<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, X. et al.<\/i> Optimization of laccase-mediated benzo[a]pyrene oxidation and the bioremedial application in aged polycyclic aromatic hydrocarbons-contaminated soil. J. Health Sci.<\/i> 56<\/b>, 534\u2013540. https:\/\/doi.org\/10.1248\/jhs.56.534<\/a> (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vipotnik, Z., Michelin, M. & Tavares, T. Development of a packed bed reactor for the removal of aromatic hydrocarbons from soil using Laccase\/mediator feeding system. Microbiol. Res.<\/i> 245<\/b>, 126687\u2013126687. https:\/\/doi.org\/10.1016\/j.micres.2020.126687<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ike, P. T. L., Birolli, W. G., dos Santos, D. M., Porto, A. L. M. & Souza, D. H. F. Biodegradation of anthracene and different PAHs by a yellow laccase from Leucoagaricus gongylophorus<\/i>. Environ. Sci. Pollut. Res.<\/i> 26<\/b>, 8675\u20138684. https:\/\/doi.org\/10.1007\/s11356-019-04197-z<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Egbewale, S. O., Kumar, A., Mokoena, M. P. & Olaniran, A. O. Metabolic biodegradation pathway of fluoranthene by indigenous Trichoderma lixii<\/i> and Talaromyces pinophilus<\/i> spp. Catalysts<\/i> 13<\/b>, 791. https:\/\/doi.org\/10.3390\/catal13050791<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Gen. Microbiol.<\/i> 31<\/b>, 3017\u20133027. https:\/\/doi.org\/10.1016\/S0021-9258(19)52451-6<\/a> (1951).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zungu, N. S., Egbewale, S. O., Olaniran, A. O., P\u00e9rez-Fern\u00e1ndez, M. & Magadlela, A. Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils. Appl. Soil Ecol.<\/i> 155<\/b>, 103663\u2013103663. https:\/\/doi.org\/10.1016\/j.apsoil.2020.103663<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, Y. R., Luo, Z. H., Kwok-Kei Chow, R. & Vrijmoed, L. L. P. Purification and characterization of an extracellular Laccase from the anthracene-degrading fungus Fusarium solani<\/i> MAS2. Bioresour. Technol.<\/i> 101<\/b>, 9772\u20139777. https:\/\/doi.org\/10.1016\/j.biortech.2010.07.091<\/a> (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ning, Y.-J. et al.<\/i> An extracellular yellow Laccase with potent dye decolorizing ability from the fungus Leucoagaricus naucinu<\/i>s LAC-04. Int. J. Biol. Macromol.<\/i> 93<\/b>, 837\u2013842. https:\/\/doi.org\/10.1016\/j.ijbiomac.2016.09.046<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Setlhare, B., Kumar, A., Mokoena, M. P., Pillay, B. & Olaniran, A. O. Phenol hydroxylase from Pseudomonas<\/i> sp. KZNSA: Purification, characterization and prediction of three-dimensional structure. Int. J. Biol. Macromol.<\/i> 146<\/b>, 1000\u20131008. https:\/\/doi.org\/10.1016\/j.ijbiomac.2019.09.224<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wei, Z. et al.<\/i> Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Methods<\/i> 1<\/b>, 100014. https:\/\/doi.org\/10.1016\/j.crmeth.2021.100014<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, J. & Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res.<\/i> 43<\/b>, W174\u2013W181. https:\/\/doi.org\/10.1093\/nar\/gkv342<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, C., Freddolino, P. L. & Zhang, Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein\u2013protein interaction information. Nucleic Acids Res.<\/i> 45<\/b>, W291\u2013W299. https:\/\/doi.org\/10.1093\/nar\/gkx366<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2\u2014A multiple sequence alignment editor and analysis workbench. Bioinformatics<\/i> 25<\/b>, 1189\u20131191. https:\/\/doi.org\/10.1093\/bioinformatics\/btp033<\/a> (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol.<\/i> 38<\/b>, 3022\u20133027. https:\/\/doi.org\/10.1093\/molbev\/msab120<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zelinkova, Z. & Wenzl, T. The occurrence of 16 EPA PAHs in food\u2014A review. Polycycl. Aromat. Compd.<\/i> 35<\/b>, 248\u2013284. https:\/\/doi.org\/10.1080\/10406638.2014.918550<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cambria, M. T., Minniti, Z., Librando, V. & Cambria, A. Degradation of polycyclic aromatic hydrocarbons by Rigidoporus<\/i> lignosus and its laccase in the presence of redox mediators. Appl. Biochem. Biotechnol.<\/i> 149<\/b>, 1\u20138. https:\/\/doi.org\/10.1007\/s12010-007-8100-4<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ezike, T. C., Ezugwu, A. L., Udeh, J. O., Eze, S. O. O. & Chilaka, F. C. Purification and characterisation of new laccase from Trametes polyzona<\/i> WRF03. Biotechnol. Rep.<\/i> 28<\/b>, e00566. https:\/\/doi.org\/10.1016\/j.btre.2020.e00566<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mukhopadhyay, M. & Banerjee, R. Purification and biochemical characterization of a newly produced yellow Laccase from Lentinus squarrosulus<\/i> MR13. 3 Biotech<\/i> 5<\/b>, 227\u2013236. https:\/\/doi.org\/10.1007\/s13205-014-0219-8<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Agrawal, K., Bhardwaj, N., Kumar, B., Chaturvedi, V. & Verma, P. Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria<\/i> ITCC-8447 and its application in delignification of agroresidues. Int. J. Biol. Macromol.<\/i> 125<\/b>, 1042\u20131055. https:\/\/doi.org\/10.1016\/j.ijbiomac.2018.12.108<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sch\u00fcckel, J., Matura, A. & van P\u00e9e, K. H. One-copper Laccase-related enzyme from Marasmius<\/i> sp.: Purification, characterization and bleaching of textile dyes. Enz. Microb. Technol.<\/i> 48<\/b>, 278\u2013284. https:\/\/doi.org\/10.1016\/j.enzmictec.2010.12.002<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jeon, S. J. & Lim, S. J. Purification and characterization of the laccase involved in dye decolorization by the white-rot fungus Marasmius scorodonius<\/i>. J. Microbiol. Biotechnol.<\/i> 27<\/b>, 1120\u20131127. https:\/\/doi.org\/10.4014\/jmb.1701.01004<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mtiba\u00e0, R. et al.<\/i> Purification and characterization of a fungal laccase from the ascomycete Thielavia<\/i> sp. and its role in the decolorization of a recalcitrant dye. Int. Biodeteriorat. Biodegrad.<\/i> 120<\/b>, 1744\u20131751. https:\/\/doi.org\/10.1016\/j.ijbiomac.2018.09.175<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao, D., Zhang, X., Cui, D. & Zhao, M. Characterisation of a novel white laccase from the deuteromycete fungus Myrothecium verrucaria<\/i> NF-05 and its decolourisation of dyes. Plos One<\/i> 7<\/b>, e38817. https:\/\/doi.org\/10.1371\/journal.pone.0038817<\/a> (2012).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Othman, A. M., Elsayed, M. A., Elshafei, A. M. & Hassan, M. M. Purification and biochemical characterization of two isolated Laccase isoforms from Agaricus bisporus<\/i> CU13 and their potency in dye decolorization. Int. J. Biol. Macromol.<\/i> 113<\/b>, 1142\u20131148. https:\/\/doi.org\/10.1016\/j.ijbiomac.2018.03.043<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Navada, K. K. & Kulal, A. Kinetic characterization of purified Laccase from Trametes hirsuta<\/i>: A study on Laccase catalyzed biotransformation of 1,4-dioxane. Biotechnol. Lett.<\/i> 43<\/b>, 613\u2013626. https:\/\/doi.org\/10.1007\/s10529-020-03038-1<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sadeghian-Abadi, S., Rezaei, S., Yousefi-Mokri, M. & Faramarzi, M. A. Enhanced production, one-step affinity purification, and characterization of Laccase from solid-state culture of Lentinus tigrinus<\/i> and delignification of pistachio shell by free and immobilized enzyme. J. Environ. Manag.<\/i> 244<\/b>, 235\u2013246. https:\/\/doi.org\/10.1016\/j.jenvman.2019.05.058<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bagewadi, Z. K., Mulla, S. I. & Ninnekar, H. Z. Purification and immobilization of laccase from Trichoderma harzianum<\/i> strain HZN10 and its application in dye decolorization. J. Genet. Eng. Biotechnol.<\/i> 15<\/b>, 139\u2013150. https:\/\/doi.org\/10.1016\/j.jgeb.2017.01.007<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, X., Zain Ul Arifeen, M., Xue, Y. & Liu, C. Genome-wide characterization of laccase gene family in Schizophyllum commune 20R\u20137-F01, isolated from deep sediment 2 km below the seafloor. Front. Microbiol.<\/i> 13<\/b>, 923451. https:\/\/doi.org\/10.3389\/fmicb.2022.923451<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, X., Zhang, Y., Liang, M., Kong, W. & Liu, J. The citrus Laccase gene CsLAC18 contributes to cold tolerance. Int. J. Mol. Sci.<\/i> 23<\/b>, 14509 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sharma, V., Upadhyay, L. S. B. & Vasanth, D. Extracellular thermostable Laccase-like enzymes from Bacillus licheniformis<\/i> strains: Production, purification and characterization. Appl. Biochem. Microbiol.<\/i> 56<\/b>, 420\u2013432. https:\/\/doi.org\/10.1134\/S0003683820040146<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guti\u00e9rrez-Ant\u00f3n, M. et al.<\/i> Improvement of Laccase production by Thielavia terrestris Co3Bag1. Enhancing the bio-catalytic performance of the native thermophilic TtLacA via immobilization in copper alginate gel beads. J. Fungi<\/i> 9<\/b>, 308 (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chatterjee, R., Johansson, K., J\u00e4rnstr\u00f6m, L. & J\u00f6nsson, L. J. Evaluation of the potential of fungal and plant Laccases for active-packaging applications. J. Agric. Food Chem.<\/i> 59<\/b>, 5390\u20135395. https:\/\/doi.org\/10.1021\/jf103811g<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Quynh, D. T., Hoang, N. H., Lan, N. N., Hoang, L. V. & Nghi, D. H. Cloning, experession, and characterization of a Laccase from the white rot fungi Pleurotus pulmonarius<\/i> MPN18. VNU J. Sci. Nat. Sci. Technol.<\/i> 39<\/b>, 59\u201367. https:\/\/doi.org\/10.25073\/2588-1140\/vnunst.5312<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lin, Y. et al.<\/i> Purification and characterization of a novel Laccase from Coprinus cinereus<\/i> and decolorization of different chemically dyes. Mol. Biol. Rep.<\/i> 40<\/b>, 1487\u20131494. https:\/\/doi.org\/10.1007\/s11033-012-2191-x<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Murugesan, K., Kim, Y. M., Jeon, J. R. & Chang, Y. S. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum<\/i>. J. Hazard. Mater.<\/i> 168<\/b>, 523\u2013529. https:\/\/doi.org\/10.1016\/j.jhazmat.2009.02.075<\/a> (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nagai, M. et al.<\/i> Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes<\/i>, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol.<\/i> 60<\/b>, 327\u2013335. https:\/\/doi.org\/10.1007\/s00253-002-1109-2<\/a> (2002).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, G. Q., Wang, Y. F., Zhang, X. Q., Ng, T. B. & Wang, H. X. Purification and characterization of a novel Laccase from the edible mushroom Clitocybe maxima<\/i>. Process Biochem.<\/i> 45<\/b>, 627\u2013633. https:\/\/doi.org\/10.1016\/j.procbio.2009.12.010<\/a> (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rezaei, S., Shahverdi, A. R. & Faramarzi, M. A. Isolation, one-step affinity purification, and characterization of a polyextremotolerant Laccase from the halophilic bacterium Aquisalibacillus elongatus<\/i> and its application in the delignification of sugar beet pulp. Bioresour. Technol.<\/i> 230<\/b>, 67\u201375. https:\/\/doi.org\/10.1016\/j.biortech.2017.01.036<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sadhasivam, S., Savitha, S., Swaminathan, K. & Lin, F.-H. Production, purification and characterization of mid-redox potential Laccase from a newly isolated Trichoderma harzianum<\/i> WL1. Process Biochem.<\/i> 43<\/b>, 736\u2013742. https:\/\/doi.org\/10.1016\/j.procbio.2008.02.017<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lueangjaroenkit, P. et al.<\/i> Two Manganese peroxidases and a Laccase of Trametes polyzona<\/i> KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system. Mycobiology<\/i> 47<\/b>, 217\u2013229. https:\/\/doi.org\/10.1080\/12298093.2019.1589900<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Giardina, P. et al.<\/i> Protein and gene structure of a blue laccase from Pleurotus ostreatus<\/i>. Biochem. J.<\/i> 341<\/b>, 655\u2013663. https:\/\/doi.org\/10.1042\/BJ3410655<\/a> (1999).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    C\u00e1zares-Garc\u00eda, S. V., V\u00e1zquez-Garcidue\u00f1as, M. S. & V\u00e1zquez-Marrufo, G. Structural and phylogenetic analysis of Laccases from Trichoderma<\/i>: A bioinformatic approach. Plos One<\/i> 8<\/b>, e55295. https:\/\/doi.org\/10.1371\/journal.pone.0055295<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nadar, S. S. & Rathod, V. K. Amino acid induced hyper activation of laccase and its application in dye degradation. Biocatal. Agric. Biotechnol.<\/i> 18<\/b>, 101064. https:\/\/doi.org\/10.1016\/j.bcab.2019.101064<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gomez-Fernandez, B. J., Risso, V. A., Sanchez-Ruiz, J. M. & Alcalde, M. Consensus design of an evolved high-redox potential Laccase. Front. Bioeng. Biotechnol.<\/i> 8<\/b>, 354\u2013354. https:\/\/doi.org\/10.3389\/FBIOE.2020.00354\/BIBTEX<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mehra, R., Muschiol, J., Meyer, A. S. & Kepp, K. P. A structural-chemical explanation of fungal Laccase activity. Sci. Rep.<\/i> 8<\/b>, 1\u201316. https:\/\/doi.org\/10.1038\/s41598-018-35633-8<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kallio, J. P. et al.<\/i> Structure-function studies of a Melanocarpus albomyces<\/i> Laccase suggest a pathway for oxidation of phenolic compounds. J. Mol. Biol.<\/i> 392<\/b>, 895\u2013909. https:\/\/doi.org\/10.1016\/j.jmb.2009.06.053<\/a> (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fern\u00e1ndez-Fueyo, E., Ruiz-Due\u00f1as, F. J., MikiY, M. M. J., Hammel, K. E. & Mart\u00ednez, A. T. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora<\/i>. J. Biol. Chem.<\/i> 287<\/b>, 16309\u201316916. https:\/\/doi.org\/10.1074\/jbc.M112.356378<\/a> (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fathi-Roudsari, M., Behmanesh, M., Salmanian, A.-H., Sadeghizadeh, M. & Khajeh, K. Iranian biomedical functional surface display of laccase in a phenol-inducible bacterial circuit for bioremediation purposes. Iran Biomed. J.<\/i> 22<\/b>, 202\u2013209. https:\/\/doi.org\/10.22034\/ibj.22.3.202<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hu, Q. et al.<\/i> Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol.<\/i> 176<\/b>, 1808\u20131823. https:\/\/doi.org\/10.1104\/pp.17.01628<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bankole, P. O., Semple, K. T., Jeon, B. H. & Govindwar, S. P. Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis<\/i> strain bpo1 using response surface methodology. Ecotoxicol. Environ. Saf.<\/i> 208<\/b>, 111619\u2013111619. https:\/\/doi.org\/10.1016\/j.ecoenv.2020.111619<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, W., Zhang, W., Gan, Y., Yang, J. & Zhang, S. Laccase immobilization with metal-organic frameworks: Current status, remaining challenges and future perspectives. Crit. Rev. Environ. Sci. Technol.<\/i> 52<\/b>, 1282\u20131324. https:\/\/doi.org\/10.1080\/10643389.2020.1854565<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Oliva-Taravilla, A., Tom\u00e1s-Pej\u00f3, E., Demuez, M., Gonz\u00e1lez-Fern\u00e1ndez, C. & Ballesteros, M. Inhibition of cellulose enzymatic hydrolysis by Laccase-derived compounds from phenols. Biotechnol. Prog.<\/i> 31<\/b>, 700\u2013706. https:\/\/doi.org\/10.1002\/BTPR.2068<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Di Franco, A., Poujol, R., Baurain, D. & Philippe, H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMV Evol. Biol.<\/i> 19<\/b>, 21. https:\/\/doi.org\/10.1186\/s12862-019-1350-2<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Malhis, N., Jones, S. J. M. & Gsponer, J. Improved measures for evolutionary conservation that exploit taxonomy distances. Nat. Commun.<\/i> 10<\/b>, 1556. https:\/\/doi.org\/10.1038\/s41467-019-09583-2<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Singh, A. K., Katari, S. K., Umamaheswari, A. & Raj, A. In silico exploration of lignin peroxidase for unraveling the degradation mechanism employing lignin model compounds. RCS Adv.<\/i> 11<\/b>, 14632\u201314653. https:\/\/doi.org\/10.1039\/D0RA10840E<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vanajothi, R. et al.<\/i> In silico and in vitro analysis of Nigella sativa<\/i> bioactives against Chorismate synthase of Listeria monocytogenes<\/i>: A target protein for biofilm inhibition. Appl. Biochem. Biotechnol.<\/i> 195<\/b>, 519\u2013533. https:\/\/doi.org\/10.1007\/s12010-022-04157-3<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nelapati, A. K., Meena, S., Singh, A. K., Bhakta, N. & PonnanEttiyappan, J. In silico structural and functional analysis of Bacillus<\/i> uricases. Curr. Prot.<\/i> 18<\/b>, 124\u2013142. https:\/\/doi.org\/10.2174\/1570164617999200512081127<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, X. et al.<\/i> Characterization of a highly thermostable and organic solvent-tolerant copper-containing polyphenol Oxidase with dye-decolorizing ability from Kurthia huakuii<\/i> LAM0618T. Plos One<\/i> 11<\/b>, e0164810. https:\/\/doi.org\/10.1371\/JOURNAL.PONE.0164810<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Endo, K. et al.<\/i> Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus<\/i>. J. Biochem.<\/i> 133<\/b>, 671\u2013677. https:\/\/doi.org\/10.1093\/jb\/mvg086<\/a> (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar, A., Kameshwar, S., Barber, R. & Qin, W. Comparative modeling and molecular docking analysis of white, brown and soft rot fungal Laccases using lignin model compounds for understanding the structural and functional properties of Laccases. J. Mol. Graph Model<\/i> 79<\/b>, 15\u201326. https:\/\/doi.org\/10.1016\/j.jmgm.2017.10.019<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n