{"id":606864,"date":"2024-06-05T20:00:00","date_gmt":"2024-06-06T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/profiling-expression-strategies-for-a-type-iii-polyketide-synthase-in-a-lysate-based-cell-free-system-scientific-reports\/"},"modified":"2024-06-05T22:00:35","modified_gmt":"2024-06-06T02:00:35","slug":"profiling-expression-strategies-for-a-type-iii-polyketide-synthase-in-a-lysate-based-cell-free-system-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/profiling-expression-strategies-for-a-type-iii-polyketide-synthase-in-a-lysate-based-cell-free-system-scientific-reports\/","title":{"rendered":"Profiling expression strategies for a type III polyketide synthase in a lysate-based, cell-free system – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    B\u00e9rdy, J. Bioactive microbial metabolites. J. Antibiot.<\/i> 58<\/b>, 1\u201326 (2005).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Baltz, R. H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol.<\/i> 44<\/b>, 573\u2013588 (2017).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Palazzotto, E., Tong, Y., Lee, S. Y. & Weber, T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol. Adv.<\/i> 37<\/b>, 107366 (2019).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Musiol-Kroll, E. M., Tocchetti, A., Sosio, M. & Stegmann, E. Challenges and advances in genetic manipulation of filamentous actinomycetes: The remarkable producers of specialized metabolites. Nat. Prod. Rep.<\/i> 36<\/b>, 1351\u20131369 (2019).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Drufva, E. E., Sword, T. T. & Bailey, C. B. Metabolic engineering of actinomycetes for natural product discovery. In Natural Products from Actinomycetes: Diversity, Ecology and Drug Discovery<\/i> (eds Rai, R. V. & Bai, J. A.) 267\u2013307 (Springer, 2022).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Stevens, D. C., Hari, T. P. A. & Boddy, C. N. The role of transcription in heterologous expression of polyketides in bacterial hosts. Nat. Prod. Rep.<\/i> 30<\/b>, 1391\u20131411 (2013).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wagner, L., Jules, M. & Borkowski, O. What remains from living cells in bacterial lysate-based cell-free systems. Comput. Struct. Biotechnol. J.<\/i> 21<\/b>, 3173\u20133182 (2023).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tuckey, C., Asahara, H., Zhou, Y. & Chong, S. Protein synthesis using a reconstituted cell-free system. Curr. Protoc. Mol. Biol.<\/i> 108<\/b>, 16.31.1-16.31.22 (2014).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dinglasan, J. L. N. & Doktycz, M. J. Rewiring cell-free metabolic flux in E. coli<\/i> lysates using a block-push-pull approach. Synth. Biol.<\/i> https:\/\/doi.org\/10.1093\/synbio\/ysad007<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Garcia, D. C. et al.<\/i> A lysate proteome engineering strategy for enhancing cell-free metabolite production. Metab. Eng. Commun.<\/i> 12<\/b>, e00162 (2021).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dinglasan, J. L. N., Reeves, D. T., Hettich, R. L. & Doktycz, M. J. Liquid chromatography coupled to refractive index or mass spectrometric detection for metabolite profiling in lysate-based cell-free systems. J. Vis. Exp.<\/i> https:\/\/doi.org\/10.3791\/62852<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mouncey, N. J., Otani, H., Udwary, D. & Yoshikuni, Y. New voyages to explore the natural product galaxy. J. Ind. Microbiol. Biotechnol.<\/i> 46<\/b>, 273\u2013279 (2019).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bogart, J. W. et al.<\/i> Cell-free exploration of the natural product chemical space. ChemBioChem<\/i> 22<\/b>, 84\u201391 (2021).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ji, X., Liu, W.-Q. & Li, J. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Curr. Opin. Microbiol.<\/i> 67<\/b>, 102142 (2022).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Garenne, D. et al.<\/i> Cell-free gene expression. Nat. Rev. Methods Primers<\/i> 1<\/b>, 49 (2021).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Moore, S. J. et al.<\/i> Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. Proc. Natl. Acad. Sci. USA<\/i> 115<\/b>, E4340\u2013E4349 (2018).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    P\u00e9delacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol.<\/i> 24<\/b>, 79\u201388 (2006).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lentini, R. et al.<\/i> Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology. ACS Synth. Biol.<\/i> 2<\/b>, 482\u2013489 (2013).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jew, K. et al.<\/i> Characterizing and improving pET vectors for cell-free expression. Front. Bioeng. Biotechnol.<\/i> 10<\/b>, 895069 (2022).<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Burrington, L. R., Watts, K. R. & Oza, J. P. Characterizing and improving reaction times for E. coli<\/i>-based cell-free protein synthesis. ACS Synth. Biol.<\/i> 10<\/b>, 1821\u20131829 (2021).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schmidt, M. et al.<\/i> Maximizing heterologous expression of engineered type I polyketide synthases: Investigating codon optimization strategies. ACS Synth. Biol.<\/i> 12<\/b>, 3366\u20133380 (2023).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Funa, N. et al.<\/i> A new pathway for polyketide synthesis in microorganisms. Nature<\/i> 400<\/b>, 897\u2013899 (1999).<\/p>\n

    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Funa, N., Ohnishi, Y., Ebizuka, Y. & Horinouchi, S. Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus<\/i>. J. Biol. Chem.<\/i> 277<\/b>, 4628\u20134635 (2002).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, D. et al.<\/i> Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. USA<\/i> 115<\/b>, 9835\u20139844 (2018).<\/p>\n

    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Katsuyama, Y. & Ohnishi, Y. Type III polyketide synthases in microorganisms. Methods Enzymol.<\/i> 515<\/b>, 359\u2013377 (2012).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol.<\/i> 177<\/b>, 4121\u20134130 (1995).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, S. K., Newman, J. D. & Keasling, J. D. Catabolite repression of the propionate catabolic genes in Escherichia coli<\/i> and Salmonella enterica<\/i>: Evidence for involvement of the cyclic AMP receptor protein. J. Bacteriol.<\/i> 187<\/b>, 2793\u20132800 (2005).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, T. S. et al.<\/i> BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J. Biol. Eng.<\/i> 5<\/b>, 12 (2011).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dubendorff, J. W. & Studier, F. W. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J. Mol. Biol.<\/i> 219<\/b>, 45\u201359 (1991).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    William Studier, F., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. [6] Use of T7 RNA polymerase to direct expression of cloned genes. Gene Expr. Technol.<\/i> 185<\/b>, 60\u201389 (1990).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Krefft, D., Papkov, A., Zylicz-Stachula, A. & Skowron, P. M. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus<\/i> (RM.TthHB27I) cloned in Escherichia coli<\/i> is critically affected by the codon composition of the synthetic gene. PLoS ONE<\/i> 12<\/b>, e0186633 (2017).<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Walsh, I. M., Bowman, M. A., Soto Santarriaga, I. F., Rodriguez, A. & Clark, P. L. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc. Natl. Acad. Sci. USA<\/i> 117<\/b>, 3528\u20133534 (2020).<\/p>\n

    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sword, T. T. et al.<\/i> Expression of blue pigment synthetase a from Streptomyces lavenduale<\/i> reveals insights on the effects of refactoring biosynthetic megasynthases for heterologous expression in Escherichia coli<\/i>. Protein Expr. Purif.<\/i> 210<\/b>, 106317 (2023).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chaney, J. L. et al.<\/i> Widespread position-specific conservation of synonymous rare codons within coding sequences. PLoS Comput. Biol.<\/i> 13<\/b>, e1005531 (2017).<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Welch, M. et al.<\/i> Design parameters to control synthetic gene expression in Escherichia coli<\/i>. PLoS ONE<\/i> 4<\/b>, e7002 (2009).<\/p>\n

    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mellitzer, A., Weis, R., Glieder, A. & Flicker, K. Expression of lignocellulolytic enzymes in Pichia pastoris<\/i>. Microb. Cell Fact.<\/i> 11<\/b>, 61 (2012).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kodumal, S. J. et al.<\/i> Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci. USA<\/i> 101<\/b>, 15573\u201315578 (2004).<\/p>\n

    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Feng, Z., Zhang, L., Han, X. & Zhang, Y. Codon optimization of the calf prochymosin gene and its expression in Kluyveromyces lactis<\/i>. World J. Microbiol. Biotechnol.<\/i> 26<\/b>, 895\u2013901 (2010).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Marlatt, N. M., Spratt, D. E. & Shaw, G. S. Codon optimization for enhanced Escherichia coli<\/i> expression of human S100A11 and S100A1 proteins. Protein Expr. Purif.<\/i> 73<\/b>, 58\u201364 (2010).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinform.<\/i> 7<\/b>, 285 (2006).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Richardson, S. M., Wheelan, S. J., Yarrington, R. M. & Boeke, J. D. GeneDesign: Rapid, automated design of multikilobase synthetic genes. Genome Res.<\/i> 16<\/b>, 550\u2013556 (2006).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mignon, C. et al.<\/i> Codon harmonization: Going beyond the speed limit for protein expression. FEBS Lett.<\/i> 592<\/b>, 1554\u20131564 (2018).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wright, G. et al.<\/i> CHARMING: Harmonizing synonymous codon usage to replicate a desired codon usage pattern. Protein Sci.<\/i> 31<\/b>, 221\u2013231 (2022).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou, M. et al.<\/i> Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature<\/i> 495<\/b>, 111\u2013115 (2013).<\/p>\n

    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Angov, E., Hillier, C. J., Kincaid, R. L. & Lyon, J. A. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE<\/i> 3<\/b>, e2189 (2008).<\/p>\n

    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Spencer, P. S., Siller, E., Anderson, J. F. & Barral, J. M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol.<\/i> 422<\/b>, 328\u2013335 (2012).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shabalina, S. A., Spiridonov, N. A. & Kashina, A. Sounds of silence: Synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res.<\/i> 41<\/b>, 2073\u20132094 (2013).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gilchrist, M. A., Chen, W.-C., Shah, P., Landerer, C. L. & Zaretzki, R. Estimating gene expression and codon-specific translational efficiencies, mutation biases, and selection coefficients from genomic data alone. Genome Biol. Evol.<\/i> 7<\/b>, 1559\u20131579 (2015).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Clarke, T. F. & Clark, P. L. Rare codons cluster. PLoS ONE<\/i> 3<\/b>, e3412 (2008).<\/p>\n

    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rodriguez, A., Wright, G., Emrich, S. & Clark, P. L. %MinMax: A versatile tool for calculating and comparing synonymous codon usage and its impact on protein folding. Protein Sci.<\/i> 27<\/b>, 356\u2013362 (2018).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Res.<\/i> 28<\/b>, 292 (2000).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cope, A. L. & Gilchrist, M. A. Quantifying shifts in natural selection on codon usage between protein regions: A population genetics approach. BMC Genom.<\/i> 23<\/b>, 408 (2022).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Incha, M. R. et al.<\/i> Leveraging host metabolism for bisdemethoxycurcumin production in Pseudomonas putida<\/i>. Metab. Eng. Commun.<\/i> 10<\/b>, e00119 (2020).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dinglasan, J. L. N., Sword, T. T., Barker, J. W., Doktycz, M. J. & Bailey, C. B. Investigating and optimizing the lysate-based expression of nonribosomal peptide synthetases using a reporter system. ACS Synth. Biol.<\/i> 12<\/b>, 1447\u20131460 (2023).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    McKevitt, M. et al.<\/i> Systematic cloning of Treponema pallidum<\/i> open reading frames for protein expression and antigen discovery. Genome Res.<\/i> 13<\/b>, 1665\u20131674 (2003).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Senda, N. et al.<\/i> Development of an expression-tunable multiple protein synthesis system in cell-free reactions using T7-promoter-variant series. Synth. Biol. (Oxf.)<\/i> 7<\/b>, ysac029 (2022).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Karim, A. S. et al.<\/i> Modular cell-free expression plasmids to accelerate biological design in cells. Synth. Biol. (Oxf.)<\/i> 5<\/b>, ysaa019 (2020).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Swartz, J. R., Jewett, M. C. & Woodrow, K. A. Cell-free protein synthesis with prokaryotic combined transcription-translation. Methods Mol. Biol.<\/i> 267<\/b>, 169\u2013182 (2004).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sun, Z. Z. et al.<\/i> Protocols for implementing an Escherichia coli<\/i> based TX-TL cell-free expression system for synthetic biology. J. Vis. Exp.<\/i> https:\/\/doi.org\/10.3791\/50762<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Garenne, D., Thompson, S., Brisson, A., Khakimzhan, A. & Noireaux, V. The all-E. coli<\/i>TXTL toolbox 3.0: New capabilities of a cell-free synthetic biology platform. Synth. Biol. (Oxf.)<\/i> 6<\/b>, ysab017 (2021).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tokmakov, A. A. & Fukami, Y. Activation of T7 RNA polymerase in Xenopus oocytes and cell-free extracts. Genes Cells<\/i> 15<\/b>, 1136\u20131144 (2010).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hagen, A. et al.<\/i> In vitro analysis of carboxyacyl substrate tolerance in the loading and first extension modules of borrelidin polyketide synthase. Biochemistry<\/i> 53<\/b>, 5975\u20135977 (2014).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hagen, A. et al.<\/i> Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synth. Biol.<\/i> 5<\/b>, 21\u201327 (2016).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Karig, D. K., Iyer, S., Simpson, M. L. & Doktycz, M. J. Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Res.<\/i> 40<\/b>, 3763\u20133774 (2012).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Borkowski, O. et al.<\/i> Cell-free prediction of protein expression costs for growing cells. Nat. Commun.<\/i> 9<\/b>, 1457 (2018).<\/p>\n

    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Brooks, R., Morici, L. & Sandoval, N. Cell free bacteriophage synthesis from engineered strains improves yield. ACS Synth. Biol.<\/i> 12<\/b>, 2418\u20132431 (2023).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, S. & Murray, R. M. Construction of incoherent feedforward loop circuits in a cell-free system and in cells. ACS Synth. Biol.<\/i> 8<\/b>, 606\u2013610 (2019).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Levine, M. Z., Gregorio, N. E., Jewett, M. C., Watts, K. R. & Oza, J. P. Escherichia coli<\/i>-based cell-free protein synthesis: Protocols for a robust, flexible, and accessible platform technology. J. Vis. Exp.<\/i> https:\/\/doi.org\/10.3791\/58882<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Karim, A. S. et al.<\/i> In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol.<\/i> 16<\/b>, 912\u2013919 (2020).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    V\u00f6geli, B. et al.<\/i> Cell-free prototyping enables implementation of optimized reverse \u03b2-oxidation pathways in heterotrophic and autotrophic bacteria. Nat. Commun.<\/i> 13<\/b>, 3058 (2022).<\/p>\n

    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sivashanmugam, A. et al.<\/i> Practical protocols for production of very high yields of recombinant proteins using Escherichia coli<\/i>. Protein Sci.<\/i> 18<\/b>, 936\u2013948 (2009).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Geurink, P. P. et al.<\/i> Profiling DUBs and Ubl-specific proteases with activity-based probes. Methods Enzymol.<\/i> 618<\/b>, 357\u2013387 (2019).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khlebnikov, A., Risa, O., Skaug, T., Carrier, T. A. & Keasling, J. D. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J. Bacteriol.<\/i> 182<\/b>, 7029\u20137034 (2000).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chappell, J., Jensen, K. & Freemont, P. S. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res.<\/i> 41<\/b>, 3471\u20133481 (2013).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wright, G., Rodriguez, A., Clark, P. L. & Emrich, S. A new look at codon usage and protein expression. Epic Ser. Comput.<\/i> 60<\/b>, 104\u2013112 (2019).<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hillson, N. J., Rosengarten, R. D. & Keasling, J. D. j5 DNA assembly design automation software. ACS Synth. Biol.<\/i> 1<\/b>, 14\u201321 (2012).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n