{"id":606110,"date":"2024-06-04T20:00:00","date_gmt":"2024-06-05T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/photocatalytic-antimicrobial-and-antibiofilm-activities-of-mgfe2o4-magnetic-nanoparticles-scientific-reports\/"},"modified":"2024-06-05T04:00:32","modified_gmt":"2024-06-05T08:00:32","slug":"photocatalytic-antimicrobial-and-antibiofilm-activities-of-mgfe2o4-magnetic-nanoparticles-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/photocatalytic-antimicrobial-and-antibiofilm-activities-of-mgfe2o4-magnetic-nanoparticles-scientific-reports\/","title":{"rendered":"Photocatalytic, antimicrobial and antibiofilm activities of MgFe2O4 magnetic nanoparticles – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Song, Y. et al.<\/i> Porous materials for water purification. Angew. Chem. Int. Ed.<\/i> 62<\/b>(11), e202216724 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tian, M. et al.<\/i> Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics<\/i> 10<\/b>(5), 539 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shirzadi-Ahodashti, M. et al.<\/i> Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf., A<\/i> 617<\/b>, 126383 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Water, U. N. Sustainable Development Goal 6 synthesis report on water and sanitation<\/i> 10017 (Published by the United Nations New York, 2018).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lin, L., Yang, H. & Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci.<\/i> 10<\/b>, 880246 (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Manikandan, S. et al.<\/i> A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere<\/i> 289<\/b>, 132867 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khormali, K. et al.<\/i> Novel Dy2O3\/ZnO-Au ternary nanocomposites: Green synthesis using pomegranate fruit extract, characterization and their photocatalytic and antibacterial properties. Bioorg. Chem.<\/i> 115<\/b>, 105204 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sahu, B. and L. Chopra. A review on removal of toxic colorants from the industrial effluent via advanced metal oxide semiconductor<\/i>. AIP Publishing.<\/p>\n<\/li>\n

  • \n

    Abu-Zurayk, R. et al.<\/i> Photodegradation of Carbol fuchsin dye using an Fe2\u2212xCuxZr2\u2212xWxO7 photocatalyst under visible-light irradiation. Catalysts<\/i> 11<\/b>, 1473 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guzm\u00e1n, M. G., Dille, J. & Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng<\/i> 2<\/b>(3), 104\u2013111 (2009).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pantidos, N. & Horsfall, L. E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol.<\/i> 5<\/b>(5), 1 (2014).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao, C. et al.<\/i> Application of coagulation\/flocculation in oily wastewater treatment: A review. Sci. Total Environ.<\/i> 765<\/b>, 142795 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Culp, G., Hansen, S. & Richardson, G. High-rate sedimentation in water treatment works. J. \u2013Am. Water Works Assoc.<\/i> 60<\/b>(6), 681\u2013698 (1968).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hashemi, Z. et al.<\/i> Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorganic Chem. Commun.<\/i> 139<\/b>, 109320 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, X. et al.<\/i> Evolutionary metal oxide clusters for novel applications: Toward high-density data storage in nonvolatile memories. Adv. Mater.<\/i> 30<\/b>(3), 1703950 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Qu, X., Alvarez, P. J. & Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res.<\/i> 47<\/b>(12), 3931\u20133946 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cox, P. A. Transition metal oxides: an introduction to their electronic structure and properties<\/i> (Oxford University Press, Oxford, 2010).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hornyak, G. L. et al.<\/i> Introduction to nanoscience<\/i> (CRC Press, Boca Raton, 2008).<\/p>\n

    Book<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Saha, I. et al.<\/i> Role of nanotechnology in water treatment and purification: Potential applications and implications. Int. J. Chem. Sci. Technol.<\/i> 3<\/b>(3), 59\u201364 (2013).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tahir, M. B. et al.<\/i> Nanomaterials for Photocatalytic Applications, in Reference Module in Materials Science and Materials Engineering<\/i> (Elsevier, Amsterdam, 2019).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abd Elkodous, M. et al.<\/i> Carbon-dot-loaded CoxNi1\u2212xFe2<\/sub>O4<\/sub>; x = 0.9\/SiO2<\/sub>\/TiO2<\/sub> nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Sci. Rep.<\/i> 10<\/b>(1), 11534 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Johnson, A. Investigating the effects of environmental applications on decomposition of zein nanoparticles in adsorbents in industry. J. Eng. Indus. Res.<\/i> 4<\/b>(2), 92\u2013108 (2023).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Batal, A. I. et al<\/i>. Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism. Mic. Patho<\/i>. 164<\/b>, 105440 (2022).<\/p>\n<\/li>\n

  • \n

    Abuzeyad, O. H. et al<\/i>. An evaluation of the improved catalytic performance of rGO\/GO-hybrid-nanomaterials in photocatalytic degradation and antibacterial activity processes for wastewater treatment: A review. J. Mol. Structure<\/i> 1288<\/b>, 135787 (2023).<\/p>\n<\/li>\n

  • \n

    Review on Antimicrobial, R. and T. Wellcome, Tackling Drug-Resistant Infections Globally : Final Report and Recommendations<\/i>. 2016, [United Kingdom]: Review on Antimicrobial Resistance.<\/p>\n<\/li>\n

  • \n

    Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed.<\/i> 12<\/b>, 1227\u20131249 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ebrahimzadeh, M. A. et al.<\/i> In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf. Interfaces<\/i> 23<\/b>, 100963 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lagashetty, A., Pattar, A. & Ganiger, S. K. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite. Heliyon<\/i> 5<\/b>(5), e01760 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nonkumwong, J. et al.<\/i> Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles. Mater. Sci. Eng.: C<\/i> 61<\/b>, 123\u2013132 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, W., He, Q. & Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett.<\/i> 3<\/b>(11), 397\u2013415 (2008).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Sayyad, G. S., Mosallam, F. M. & El-Batal, A. I. One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol.<\/i> 29<\/b>(11), 2616\u20132625 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Batal, A. et al.<\/i> Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. British J. Pharm. Res.<\/i> 4<\/b>(11), 1341\u20131363 (2014).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kaur, N. & Kaur, M. Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles. Process. Appl. Ceram.<\/i> 8<\/b>(3), 137\u2013143 (2014).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Khawaga, A. M. et al.<\/i> Promising antimicrobial and azo dye removal activities of citric acid-functionalized magnesium ferrite nanoparticles. J. Cluster Sci.<\/i> 33<\/b>(1), 197\u2013213 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Martienssen, W. & Warlimont, H. Springer Handbook of Condensed Matter and Materials Data<\/i> Vol. 1 (Springer, Berlin-Heidelberg, 2005).<\/p>\n

    Book<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Halarnekar, D. et al.<\/i> Eco synthesized chitosan\/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int. J. Biol. Macromol.<\/i> 242<\/b>, 124764 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fei, P. et al.<\/i> Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii. Food Control<\/i> 94<\/b>, 289\u2013294 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Khawaga, A. M. et al.<\/i> Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst. Sci. Rep.<\/i> 13<\/b>(1), 5353 (2023).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khan, A. et al.<\/i> Antimicrobial susceptibility testing for enterococci. J. Clin. Microbiol.<\/i> 60<\/b>(9), e0084321 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Matouskova, P. et al.<\/i> Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food Technol. Biotechnol.<\/i> 54<\/b>(3), 304\u2013316 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Christensen, G. D., Simpson, W. A., Bisno, A. L. & Beachey, E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immunity<\/i> 37<\/b>(1), 318\u2013326 (1982).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kazemi, M., Ghobadi, M. & Mirzaie, A. Cobalt ferrite nanoparticles (CoFe2O4 MNPs) as catalyst and support: Magnetically recoverable nanocatalysts in organic synthesis. Nanotechnol. Rev.<\/i> 7<\/b>(1), 43\u201368 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Drevon, D. et al.<\/i> Uncovering the role of oxygen in Ni-Fe(OxHy) electrocatalysts using in situ soft X-ray absorption spectroscopy during the oxygen evolution reaction. Sci. Rep.<\/i> 9<\/b>(1), 1532 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Sayyad, G. S. et al.<\/i> Merits of photocatalytic and antimicrobial applications of gamma-irradiated Co x Ni 1\u2013x Fe 2 O 4\/SiO 2\/TiO 2; x= 0.9 nanocomposite for pyridine removal and pathogenic bacteria\/fungi disinfection: implication for wastewater treatment. RSC Adv.<\/i> 10<\/b>(9), 5241\u20135259 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gheidari, D. et al.<\/i> Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light. Heliyon<\/i> 6<\/b>(10), e05058 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gingasu, D. et al.<\/i> Green synthesis methods of CoFe 2 O 4 and Ag-CoFe 2 O 4 nanoparticles using hibiscus extracts and their antimicrobial potential. J. Nanomater.<\/i> 2016<\/b>, 1\u201312 (2016).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hathout, A. S. et al.<\/i> Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. J. Appl. Pharm. Sci.<\/i> 7<\/b>(1), 086\u2013092 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    H\u00f8iby, N. et al.<\/i> Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents<\/i> 35<\/b>(4), 322\u2013332 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dufour, D., Leung, V. & L\u00e9vesque, C. M. Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Top.<\/i> 22<\/b>(1), 2\u201316 (2010).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Avila-Novoa, M. G. et al.<\/i> Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front. Microbiol.<\/i> 13<\/b>, 1001700 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Whelan, S. et al.<\/i> Uropathogenic Escherichia coli biofilm-forming capabilities are not predictable from clinical details or from colonial morphology. Diseases<\/i> 8<\/b>(2), 11 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Elbasuney, S. et al.<\/i> Antimicrobial, and antibiofilm activities of silver doped hydroxyapatite: A novel bioceramic material for dental filling. J. Inorganic Organometallic Polymers Mater.<\/i> 32<\/b>(12), 4559\u20134575 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Allafchian, A. et al.<\/i> Preparation, characterization, and antibacterial activity of NiFe2O4\/PAMA\/Ag\u2013TiO2 nanocomposite. J. Magn. Magn. Mater.<\/i> 404<\/b>, 14\u201320 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sanpo, N., Berndt, C. C. & Wang, J. Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J. Appl. Phys.<\/i> 112<\/b>(8), 084333 (2012).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ehi-Eromosele, C. O. et al.<\/i> Synthesis and evaluation of the antimicrobial potentials of cobalt doped-and magnesium ferrite spinel nanoparticles. Bull. Chem. Soc. Ethiopia<\/i> 32<\/b>(3), 451\u2013458 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maksoud, M. I. A. A. et al.<\/i> Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial Pathog.<\/i> 127<\/b>, 144\u2013158 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lagashetty, A., Pattar, A. & Ganiger, S. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite. Heliyon<\/i> 5<\/b>, e01760 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nigam, A. et al.<\/i> Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity. Mater. Today Commun.<\/i> 31<\/b>, 103632 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vishwakarma, A. K. et al.<\/i> Antibacterial activity of PANI coated CoFe2O4 nanocomposite for gram-positive and gram-negative bacterial strains. Mater. Today Commun.<\/i> 31<\/b>, 103229 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maksoud, M. I. A. A. et al.<\/i> Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. J. Hazard. Mater.<\/i> 399<\/b>, 123000 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pathania, D. et al.<\/i> Exploring phytochemical composition, photocatalytic, antibacterial, and antifungal efficacies of Au NPs supported by Cymbopogon flexuosus essential oil. Sci. Rep.<\/i> 12<\/b>(1), 14249 (2022).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chaudhary, V., Mostafavi, E. & Kaushik, A. De-coding Ag as an efficient antimicrobial nano-system for controlling cellular\/biological functions. Matter<\/i> 5<\/b>(7), 1995\u20131998 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khairnar, S. D. et al.<\/i> Synthesis and characterization of 2-D La-doped Bi2O3 for photocatalytic degradation of organic dye and pesticide. J. Photochem. Photobiol.<\/i> 6<\/b>, 100030 (2021).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shah, Z. H. et al.<\/i> Visible light activation of SrTiO3 by loading Ag\/AgX (X\u00e1= \u00e1Cl, Br) for highly efficient plasmon-enhanced photocatalysis. Mater. Chem. Phys.<\/i> 198<\/b>, 73\u201382 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mahmoodi, N. M. Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination<\/i> 279<\/b>(1\u20133), 332\u2013337 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, H., Yang, H. & Wang, S. Hydrothermal synthesis, growth mechanism, optical properties and photocatalytic activity of cubic SrTiO3 particles for the degradation of cationic and anionic dyes. Optik<\/i> 175<\/b>, 237\u2013249 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ollis, D. F. Kinetics of photocatalyzed reactions: five lessons learned. Frontiers in chemistry<\/i> 6<\/b>, 378 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Miranda, M. O. et al.<\/i> Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals. RSC Adv.<\/i> 11<\/b>(44), 27720\u201327733 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abuzeyad, O. H. et al.<\/i> Merits of photocatalytic activity of synthesized (ZnxCu(1\u2013x)Fe2O4); x = (0\u20131) magnetic nanoparticles for wastewater treatment. J. Mater. Sci.<\/i> 59<\/b>(10), 4152\u20134166 (2024).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Malefane, M. E., Feleni, U. & Kuvarega, A. T. Cobalt (II\/III) oxide and tungsten (VI) oxide pn heterojunction photocatalyst for photodegradation of diclofenac sodium under visible light. J. Environ. Chem. Eng.<\/i> 8<\/b>(2), 103560 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, D. et al.<\/i> Photocatalytic degradation of organic dye and phytohormone by a Cu (II) complex powder catalyst with added H2O2. Colloids Surf. A<\/i> 603<\/b>, 125147 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Harikishore, M. et al.<\/i> Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO2. Procedia Mater. Sci.<\/i> 6<\/b>, 557\u2013566 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fouladi-Fard, R. et al.<\/i> The surface modification of spherical ZnO with Ag nanoparticles: A novel agent, biogenic synthesis, catalytic and antibacterial activities. Arab. J. Chem.<\/i> 15<\/b>(3), 103658 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Velayati, M. et al.<\/i> Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects. Environ. Technol. Innov.<\/i> 27<\/b>, 102610 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dom, R. et al.<\/i> Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun.<\/i> 151<\/b>(6), 470\u2013473 (2011).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, K. et al.<\/i> Photocatalytic degradation of methylene blue on magnetically separable FePc\/Fe3O4 nanocomposite under visible irradiation. Pure Appl. Chem.<\/i> 81<\/b>(12), 2327\u20132335 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abu-Zurayk, R. et al.<\/i> Photodegradation of Carbol fuchsin dye using an Fe2\u2212xCuxZr2\u2212xWxO7 photocatalyst under visible-light irradiation. Catalysts<\/i> 11<\/b>(12), 1473 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, H. et al.<\/i> An efficient construction method of S-scheme Ag2CrO4\/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity. Colloids Surf. A: Physicochem. Eng. Aspects<\/i> 641<\/b>, 128603 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Naik, M. M. et al.<\/i> Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. J. Sol-Gel Sci. Technol.<\/i> 91<\/b>, 578\u2013595 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ahmadzadeh, M. et al.<\/i> Assessment of the photocatalytic performance and cytotoxic effects of barium sulfate nanoparticles synthesized with a one-step hydrothermal method. Inorganic Chem. Commun.<\/i> 160<\/b>, 111904 (2024).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mohandes, A. et al.<\/i> Biosynthesis of cobalt oxide nanoparticles (Co3O4-NPs) using Caccinia macranthera extract and evaluation of their cytotoxicity and photocatalytic activity. Mater. Sci. Eng.: B<\/i> 297<\/b>, 116782 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n