{"id":605824,"date":"2024-06-03T20:00:00","date_gmt":"2024-06-04T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/superoxide-dismutase-1-modified-dental-pulp-stem-cells-alleviate-high-altitude-pulmonary-edema-by-inhibiting-oxidative-stress-through-the-nrf2-ho-1-pathway-gene-therapy\/"},"modified":"2024-06-04T20:49:28","modified_gmt":"2024-06-05T00:49:28","slug":"superoxide-dismutase-1-modified-dental-pulp-stem-cells-alleviate-high-altitude-pulmonary-edema-by-inhibiting-oxidative-stress-through-the-nrf2-ho-1-pathway-gene-therapy","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/superoxide-dismutase-1-modified-dental-pulp-stem-cells-alleviate-high-altitude-pulmonary-edema-by-inhibiting-oxidative-stress-through-the-nrf2-ho-1-pathway-gene-therapy\/","title":{"rendered":"Superoxide dismutase 1-modified dental pulp stem cells alleviate high-altitude pulmonary edema by inhibiting oxidative stress through the Nrf2\/HO-1 pathway – Gene Therapy","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Luks AM, Hackett PH. Medical conditions and high-altitude travel. N Engl J Med. 2022;386(4):364\u201373. https:\/\/doi.org\/10.1056\/NEJMra2104829<\/a>.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Basnyat B. Acute high-altitude illnesses. N. Engl J Med. 2013;369(17):1666. https:\/\/doi.org\/10.1056\/NEJMc1309747<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Luks AM, Auerbach PS, Freer L, Grissom CK, Keyes LE, McIntosh SE, et al. Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 Update. Wilderness Environ Med. 2019;30(4s):3\u201318. https:\/\/doi.org\/10.1016\/j.wem.2019.04.006<\/a>.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Stream JO, Grissom CK. Update on high-altitude pulmonary edema: pathogenesis, prevention, and treatment. Wilderness Environ Med. 2008;19(4):293\u2013303. https:\/\/doi.org\/10.1580\/07-WEME-REV-173.1<\/a>.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pena E, Alam SE, Siques P, Brito J. Oxidative stress and diseases associated with high-altitude exposure. Antioxidants. 2022;11(2):267. https:\/\/doi.org\/10.3390\/antiox11020267<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z. High altitude and oxidative stress. Respir Physiol Neurobiol. 2007;158(2-3):128\u201331. https:\/\/doi.org\/10.1016\/j.resp.2007.03.013<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis. 2020;1866(7):165768. https:\/\/doi.org\/10.1016\/j.bbadis.2020.165768<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang XJ, Song CX, Zhong CQ, Wang FS. Research progress in the radioprotective effect of superoxide dismutase. Drug Discov Ther. 2012;6(4):169\u201377. https:\/\/doi.org\/10.5582\/ddt.2012.v6.4.169<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ryan AL, Ikonomou L, Atarod S, B\u00f6l\u00fckbas DA, Collins J, Freishtat R, et al. Stem cells, cell therapies, and bioengineering in lung biology and diseases 2017. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol. 2019;61(4):429\u201339. https:\/\/doi.org\/10.1165\/rcmb.2019-0286ST<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13(1):366. https:\/\/doi.org\/10.1186\/s13287-022-03054-0<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19(12):1885\u201393. https:\/\/doi.org\/10.1089\/scd.2010.0093<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1(1):5. https:\/\/doi.org\/10.1186\/scrt5<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Baniebrahimi G, Khanmohammadi R, Mir F. Teeth-derived stem cells: A source for cell therapy. J Cell Physiol. 2019;234(3):2426\u201335. https:\/\/doi.org\/10.1002\/jcp.27270<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lv H, Chen W, Xiang AP, Zhang Q, Yang Y, Yi H. Mesenchymal stromal cells as a salvage treatment for confirmed acute respiratory distress syndrome: preliminary data from a single-arm study. Intensive Care Med. 2020;46(10):1944\u20137. https:\/\/doi.org\/10.1007\/s00134-020-06122-2<\/a>.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Le Thi Bich P, Thi HN, Chau HDN, Van TP, Do Q, Khac HD, et al. Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Res Ther. 2020;11(1):60. https:\/\/doi.org\/10.1186\/s13287-020-1583-4<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shi L, Yuan X, Yao W, Wang S, Zhang C, Zhang B. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial[J]. EBioMedicine. 2022;75:103789. https:\/\/doi.org\/10.1016\/j.ebiom.2021.103789<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang D, Liu F, Yang W, Sun Y, Wang X, Sui X. Meldonium ameliorates hypoxia-induced lung injury and oxidative stress by regulating platelet-type phosphofructokinase-mediated glycolysis. Front Pharm. 2022;13:863451. https:\/\/doi.org\/10.3389\/fphar.2022.863451<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206\u201316. https:\/\/doi.org\/10.1016\/j.stem.2009.02.001<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cerrada A, Torre PDL, Grande J, Haller T, Flores AI, P\u00e9rez-Gil J. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes. PLoS One. 2014;9(10):110195. https:\/\/doi.org\/10.1371\/journal.pone.0110195<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ting AE, Baker EK, Champagne J, Desai TJ, Santos CCD, Heijink LH. Proceedings of the ISCT scientific signature series symposium, \u201cAdvances in cell and gene therapies for lung diseases and critical illnesses\u201d: International Society for Cell & Gene Therapy, Burlington VT, US, July 16, 2021. Cytotherapy. 2022;24(8):774\u201388. https:\/\/doi.org\/10.1016\/j.jcyt.2021.11.007<\/a>.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie. 2018;155:129\u201339. https:\/\/doi.org\/10.1016\/j.biochi.2018.10.014<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996;76(3):839\u201385. https:\/\/doi.org\/10.1152\/physrev.1996.76.3.839<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H(2)O(2) and CoCl(2) induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells. Int J Biol Macromol. 2023;240:124378. https:\/\/doi.org\/10.1016\/j.ijbiomac.2023.124378<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ruaro B, Salton F, Braga L, Wade B, Confalonieri P, Volpe MC, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci. 2021;22(5):2566. https:\/\/doi.org\/10.3390\/ijms22052566<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Verkman AS, Matthay MA, Song Y. Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):867\u201379. https:\/\/doi.org\/10.1152\/ajplung.2000.278.5.L867<\/a>.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: emerging roles, regulation, and clinical implications. Respir Med. 2020;174:106193. https:\/\/doi.org\/10.1016\/j.rmed.2020.106193<\/a>.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Urner M, Herrmann IK, Booy C, Graggen BR, Maggiorini M, Beck-Schimmer B. Effect of hypoxia and dexamethasone on inflammation and ion transporter function in pulmonary cells. Clin Exp Immunol. 2012;169(2):119\u201328. https:\/\/doi.org\/10.1111\/j.1365-2249.2012.04595.x<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu J, Su X, Burley SK, Zheng XFS. Nuclear SOD1 in growth control, oxidative stress response, amyotrophic lateral sclerosis, and cancer. Antioxidants. 2022;11(2). https:\/\/doi.org\/10.3390\/antiox11020427<\/a>.<\/p>\n<\/li>\n

  • \n

    Sharma Kandel R, Mishra R, Gautam J, Alaref A, Hassan A, Jahan N. Patchy vasoconstriction versus inflammation: a debate in the pathogenesis of high altitude pulmonary edema. Cureus. 2020;12:10371. https:\/\/doi.org\/10.7759\/cureus.10371<\/a>.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu D, Hu YH, Gou X, Li FY, Yang XY, Li YM, et al. Oxidative stress and antioxidative therapy in pulmonary arterial hypertension. Molecules. 2022;27(12):3724. https:\/\/doi.org\/10.3390\/molecules27123724<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sydykov A, Mishra R, Gautam J, Alaref A, Hassan A, Jahan N. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders. Int J Environ Res Public Health. 2021;18(4). https:\/\/doi.org\/10.3390\/ijerph18041692<\/a>.<\/p>\n<\/li>\n

  • \n

    Kostov K, Halacheva L .Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci. 2018;19(6). https:\/\/doi.org\/10.3390\/ijms19061724<\/a>.<\/p>\n<\/li>\n

  • \n

    Emerson M, Momi S, Paul W, Alberti PF, Page C, Gresele P. Endogenous nitric oxide acts as a natural antithrombotic agent in vivo by inhibiting platelet aggregation in the pulmonary vasculature. Thromb Haemost. 1999;81(6):961\u20136.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rubin LJ, Mendoza J, Hood M, McGoon M, Barst R, Williams WB. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann Intern Med. 1990;112(7):485\u201391. https:\/\/doi.org\/10.7326\/0003-4819-112-7-485<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pollock DM. Endothelin, angiotensin, and oxidative stress in hypertension. Hypertension. 2005;45(4):477\u201380. https:\/\/doi.org\/10.1161\/01.HYP.0000158262.11935.d0<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rucker D, Dhamoon AS. Physiology, Thromboxane A2[M]. 2022 Sep 12. In StatPearls[Internet]. Treasure Island (FL): StatPearls Publishing. 2023 Jan.PMID: 30969639<\/p>\n<\/li>\n

  • \n

    Michel RP, Hakim TS, Smith TT, Poulsen RS. Quantitative morphology of permeability lung edema in dogs induced by alpha-naphthylthiourea. Lab Investig. 1983;49(4):412\u20139.<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Briot R, Bayat S, Anglade D, Martiel J, Grimbert F. Monitoring the capillary-alveolar leakage in an A.R.D.S. model using broncho-alveolar lavage. Microcirculation. 2008;15(3): https:\/\/doi.org\/10.1080\/10739680701647410<\/a>.<\/p>\n<\/li>\n

  • \n

    Kubo K, Hanaoka M, Hayano T, Miyahara T, Hachiya T, Hayasaka M. Inflammatory cytokines in BAL fluid and pulmonary hemodynamics in high-altitude pulmonary edema. Respir Physiol. 1998;111(3):301\u201310. https:\/\/doi.org\/10.1016\/s0034-5687(98)00006-1<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O\u2019Rourke B. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol. 2010;6(1):1000657. https:\/\/doi.org\/10.1371\/journal.pcbi.1000657<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nordberg J, Arn\u00e9r ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31(11):1287\u2013312. https:\/\/doi.org\/10.1016\/s0891-5849(01)00724-9<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008;15(4):660\u20136. https:\/\/doi.org\/10.1038\/sj.cdd.4402307<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gong G, Yin L, Yuan L, Sui D, Sun Y, Fu H. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K\/AKT-Nrf2 pathway. Mol Immunol. 2018;95:91\u20138. https:\/\/doi.org\/10.1016\/j.molimm.2018.02.001<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang J, Lu Q, Cai J, Wang Y, Lai X, Qiu Y. Nestin regulates cellular redox homeostasis in lung cancer through the Keap1-Nrf2 feedback loop. Nat Commun. 2019;10(1):5043. https:\/\/doi.org\/10.1038\/s41467-019-12925-9<\/a>.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n