{"id":605338,"date":"2024-06-02T20:00:00","date_gmt":"2024-06-03T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/analysis-of-human-neuronal-cells-carrying-astn2-deletion-associated-with-psychiatric-disorders-translational-psychiatry\/"},"modified":"2024-06-04T03:31:46","modified_gmt":"2024-06-04T07:31:46","slug":"analysis-of-human-neuronal-cells-carrying-astn2-deletion-associated-with-psychiatric-disorders-translational-psychiatry","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/analysis-of-human-neuronal-cells-carrying-astn2-deletion-associated-with-psychiatric-disorders-translational-psychiatry\/","title":{"rendered":"Analysis of human neuronal cells carrying ASTN2 deletion associated with psychiatric disorders – Translational Psychiatry","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Baba K, Guo WJ, Chen YR, Nosaka T, Kato T. Burden of schizophrenia among Japanese patients: a cross-sectional National Health and Wellness Survey. BMC Psychiatry. 2022;22:410.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Simeone JC, Ward AJ, Rotella P, Collins J, Windisch R. An evaluation of variation in published estimates of schizophrenia prevalence from 1990-2013: a systematic literature review. BMC Psychiatry. 2015;15:193.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Saito M, Hirota T, Sakamoto Y, Adachi M, Takahashi M, Osato-Kaneda A, et al. Prevalence and cumulative incidence of autism spectrum disorders and the patterns of co-occurring neurodevelopmental disorders in a total population sample of 5-year-old children. Mol Autism. 2020;11:35.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sasayama D, Kuge R, Toibana Y, Honda H. Trends in autism spectrum disorder diagnoses in Japan, 2009 to 2019. JAMA Netw Open. 2021;4:e219234.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schendel DE, Thorsteinsson E. Cumulative incidence of autism into adulthood for birth cohorts in Denmark, 1980-2012. JAMA. 2018;320:1811\u20133.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kato T, Baba K, Guo WJ, Chen YR, Nosaka T. Impact of bipolar disorder on health-related quality of life and work productivity: estimates from the national health and wellness survey in Japan. J Affect Disord. 2021;295:203\u201314.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Clemente AS, Diniz BS, Nicolato R, Kapczinski FP, Soares JC, Firmo JO, et al. Bipolar disorder prevalence: a systematic review and meta-analysis of the literature. Braz. J. Psychiatry. 2015;37:155\u201361.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nishi D, Ishikawa H, Kawakami N. Prevalence of mental disorders and mental health service use in Japan (vol 73, pg 458, 2019). Psychiatry Clin Neurosci. 2019;73:767.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Demyttenaere K, Bruffaerts R, Posada-Villa J, Gasquet I, Kovess V, Lepine JP, et al. Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA. 2004;291:2581\u201390.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Koshiyama D, Fukunaga M, Okada N, Morita K, Nemoto K, Usui K, et al. White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals. Mol Psychiatry. 2020;25:883\u201395.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schwarz K, Moessnang C, Schweiger JI, Baumeister S, Plichta MM, Brandeis D, et al. Transdiagnostic prediction of affective, cognitive, and social function through brainreward anticipation in schizophrenia, bipolar disorder, major depression, and autism spectrum diagnoses. Schizophr Bull. 2020;46:592\u2013602.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nakatochi M, Kushima I, Ozaki N. Implications of germline copy-number variations in psychiatric disorders: review of large-scale genetic studies. J Hum Genet. 2021;66:25\u201337.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kushima I, Aleksic B, Nakatochi M, Shimamura T, Okada T, Uno Y, et al. Comparative analyses of copy-number variation in autism spectrum disorder and schizophrenia reveal etiological overlap and biological insights. Cell Rep. 2018;24:2838\u201356.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693\u20137.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guan JT, Cai JJ, Ji GL, Sham PC. Commonality in dysregulated expression of gene sets in cortical brains of individuals with autism, schizophrenia, and bipolar disorder. Transl. Psychiatry. 2019;9:152.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kushima I, Nakatochi M, Aleksic B, Okada T, Kimura H, Kato H, et al. Cross-disorder analysis of genic and regulatory copy number variations in bipolar disorder, schizophrenia, and autism spectrum disorder. Biol Psychiatry. 2022;92:362\u201374.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lionel AC, Tammimies K, Vaags AK, Rosenfeld JA, Ahn JW, Merico D, et al. Disruption of the ASTN2\/TRIM32 locus at 9q33. 1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum Mol Genet. 2014;23:2752\u201368.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wilson PM, Fryer RH, Fang Y, Hatten ME. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J Neurosci. 2010;30:8529\u201340.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Behesti H, Fore TR, Wu P, Horn Z, Leppert M, Hatten ME. ASTN2 modulates synaptic strength by trafficking and degradation of surface proteins. Proc Natl Acad Sci USA. 2018;115:E9717\u2013E9726.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ito, T, Yoshida M, Aida T, Kushima I, Hiramatsu Y, Ono M et al. Astrotactin2 (ASTN2) regulates emotional and cognitive functions by affecting neuronal morphogenesis and monoaminergic systems. J. Neurochem.<\/i> 2023;65(2):211\u201329.<\/p>\n<\/li>\n

  • \n

    Fang RX, Xia CL, Close JL, Zhan M, He J, Huang ZK, et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science. 2022;377:56.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kaiser T, Feng GP. Modeling psychiatric disorders for developing effective treatments. Nat. Med. 2015;21:979\u201388.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573:61.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee KM, Hawi ZH, Parkington HC, Parish CL, Kumar PV, Polo JM, et al. The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders. Molecular Psychiatry. 2020;25:368\u201378.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol. 2017;13:265\u201378.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Arioka Y, Kushima I, Kubo H, Mori D, Ozaki N. Induced pluripotent stem cells derived from a schizophrenia patient with ASTN2 deletion. Stem Cell Res. 2018;30:81\u20134.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Arioka Y, Shishido E, Kushima I, Suzuki T, Saito R, Aiba A, et al. Chromosome 22q11.2 deletion causes PERK-dependent vulnerability in dopaminergic neurons. EBioMedicine. 2021;63:103138.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fujimori K, Matsumoto T, Kisa F, Hattori N, Okano H, Akamatsu W. Escape from pluripotency via inhibition of TGF-\u03b2\/BMP and activation of Wnt signaling accelerates differentiation and aging in hPSC progeny cells. Stem Cell Rep. 2017;9:1675\u201391.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20:1013\u201322.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dan XL, Babbar M, Moore A, Wechter N, Tian JY, Mohanty JG, et al. DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic Acids Res. 2020;48:6611\u201323.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Johansson PA, Brattas PL, Douse CH, Hsieh PH, Adami A, Pontis J, et al. A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell. 2022;29:52.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495\u2013U155.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol. 2015;1241:23\u201338.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A, et al. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry. 2017;22:430\u201340.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hashimoto R, Nakazawa T, Tsurusaki Y, Yasuda Y, Nagayasu K, Matsumura K, et al. Whole-exome sequencing and neurite outgrowth analysis in autism spectrum disorder. J Hum Genet. 2016;61:199\u2013206.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sekiguchi M, Sobue A, Kushima I, Wang C, Arioka Y, Kato H, et al. ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk. Transl Psychiatry. 2020;10:247.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Toyoshima M, Akamatsu W, Okada Y, Ohnishi T, Balan S, Hisano Y, et al. Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Transl Psychiatry. 2016;6:e934.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ecco G, Imbeault M, Trono D. KRAB zinc finger proteins. Development. 2017;144:2719\u201329.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 2017;543:550\u20134.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Okuyama K, Kitajima Y, Egawa N, Kitagawa H, Ito K, Aishima S, et al. Mieap-induced accumulation of lysosomes within mitochondria (MALM) regulates gastric cancer cell invasion under hypoxia by suppressing reactive oxygen species accumulation. Sci. Rep. 2019;9:2822.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Makino S, Fukumura R, Gondo Y. Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles created by CRISPR-Cas9. Sci Rep. 2016;6:39608.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tuladhar R, Yeu Y, Tyler Piazza J, Tan Z, Rene Clemenceau J, Wu X, et al. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun. 2019;10:4056.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Smits AH, Ziebell F, Joberty G, Zinn N, Mueller WF, Clauder-M\u00fcnster S, et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods. 2019;16:1087\u201393.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Silbereis JC, Pochareddy S, Zhu Y, Li MF, Sestan N. The cellular and molecular landscapes of the developing human ventral nervous system. Neuron. 2016;89:248\u201368.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Voineagu I, Wang XC, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Emerson RO, Thomas JH. Adaptive evolution in zinc finger transcription factors. PLos Genet. 2009;5:e1000325.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nowick K, Gernat T, Almaas E, Stubbs L. Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain. Proc Natl Acad Sci USA. 2009;106:22358\u201363.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alesi V, Bertoli M, Barrano G, Torres B, Pusceddu S, Pastorino M, et al. 335.4 kb microduplication in chromosome band Xp11.2p11.3 associated with developmental delay, growth retardation, autistic disorder and dysmorphic features. Gene. 2012;505:384\u20137.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang TY, Guo H, Xiong B, Stessman HAF, Wu HD, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat. Communications. 2016;7:13316.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill RS, et al. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLos Genet. 2012;8:236\u201344.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Deneault E, White SH, Rodrigues DC, Ross PJ, Faheem M, Zaslavsky K, et al. Complete disruption of autism-susceptibility genes by gene editing predominantly reduces functional connectivity of isogenic human neurons. Stem Cell Rep. 2019;12:427\u20139.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bond AM, Ming GL, Song HJ. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17:385\u201395.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Arioka Y, Hirata A, Kushima I, Aleksic B, Mori D, Ozaki N. Characterization of a schizophrenia patient with a rare RELN deletion by combining genomic and patient-derived cell analyses. Schizophr Res. 2020;216:511\u20135.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology. 2013;68:122\u201335.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Arioka Y, Shishido E, Kubo H, Kushima I, Yoshimi A, Kimura H, et al. Single-cell trajectory analysis of human homogenous neurons carrying a rare RELN variant. Transl Psychiatry. 2018;8:12.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Banerjee A, MacDonald ML, Borgmann-Winter KE, Hahn CG. Neuregulin 1-erbB4 pathway in schizophrenia: From genes to an interactome. Brain Res Bull. 2010;83:132\u20139.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Valiente M, Marin O. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol. 2010;20:68\u201378.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Horn Z, Behesti H, Hatten ME. N-cadherin provides a cis and trans ligand for astrotactin that functions in glial-guided neuronal migration. Proc Natl Acad Sci USA. 2018;115:10556\u201363.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mitani T, Isikay S, Gezdirici A, Gulec EY, Punetha J, Fatih JM, et al. High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population. Am J Hum Genet. 2021;108:1981\u20132005.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mussazhanova Z, Shimamura M, Kurashige T, Ito M, Nakashima M, Nagayama Y. Causative role for defective expression of mitochondria-eating protein in accumulation of mitochondria in thyroid oncocytic cell tumors. Cancer Sci. 2020;111:2814\u201323.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ebrahimi-Fakhari D, Saffari A, Wahlster L, DiNardo A, Turner D, Lewis TL Jr, et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 2016;17:2162.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hjelm BE, Rollins B, Mamdani F, Lauterborn JC, Kirov G, Lynch G, et al. Evidence of mitochondrial dysfunction within the complex genetic etiology of schizophrenia. Mol Neuropsychiatry. 2015;1:201\u201319.<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M. Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev. 2015;48:10\u201321.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull. 2001;55:597\u2013610.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shivakumar V, Rajasekaran A, Subbanna M, Kalmady SV, Venugopal D, Agrawal R, et al. Leukocyte mitochondrial DNA copy number in schizophrenia. Asian J Psychiatry. 2020;53:102193.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60:748\u201366.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mattson MP, Partin J. Evidence for mitochondrial control of neuronal polarity. J Neurosci Res. 1999;56:8\u201320.<\/p>\n

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002\/(SICI)1097-4547(19990401)56:13.0.CO;2-G” data-track-action=”article reference” href=”https:\/\/doi.org\/10.1002%2F%28SICI%291097-4547%2819990401%2956%3A1%3C8%3A%3AAID-JNR2%3E3.0.CO%3B2-G” aria-label=”Article reference 67″ data-doi=”10.1002\/(SICI)1097-4547(19990401)56:13.0.CO;2-G”>Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu L, Feng Z, Cui S, Hou K, Tang L, Zhou J, et al. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS ONE. 2013;8:e63799.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou J, Li XY, Liu YJ, Feng J, Wu Y, Shen HM, et al. Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy. 2022;18:1240\u201355.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Frudd K, Burgoyne T, Burgoyne JR. Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun. 2018;9:95.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Takata A, Miyake N, Tsurusaki Y, Fukai R, Miyatake S, Koshimizu E, et al. Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder. Cell Rep. 2018;22:734\u201347.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kelly E, Escamilla CO, Tsai PT. Cerebellar dysfunction in autism spectrum disorders: deriving mechanistic insights from an internal model framework. Neuroscience. 2021;462:274\u201387.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10:537\u201350.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Owen MJ, O\u2019Donovan MC. Schizophrenia and the neurodevelopmental continuum:evidence from genomics. World Psychiatry. 2017;16:227\u201335.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Grunwald LM, Stock R, Haag K, Buckenmaier S, Eberle MC, Wildgruber D, et al. Comparative characterization of human induced pluripotent stem cells (hiPSC) derived from patients with schizophrenia and autism. Transl Psychiatry. 2019;9:179.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ishii T, Ishikawa M, Fujimori K, Maeda T, Kushima I, Arioka Y, et al. In vitro modeling of the bipolar disorder and schizophrenia using patient-derived induced pluripotent stem cells with copy number variations of PCDH15 and RELN. ENeuro. 2019;6:ENEURO.0403\u201318.2019.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n