{"id":604107,"date":"2024-06-01T20:00:00","date_gmt":"2024-06-02T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/investigation-and-characterization-of-changes-in-potato-peels-by-thermochemical-acidic-pre-treatment-for-extraction-of-various-compounds-scientific-reports\/"},"modified":"2024-06-02T22:00:31","modified_gmt":"2024-06-03T02:00:31","slug":"investigation-and-characterization-of-changes-in-potato-peels-by-thermochemical-acidic-pre-treatment-for-extraction-of-various-compounds-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/investigation-and-characterization-of-changes-in-potato-peels-by-thermochemical-acidic-pre-treatment-for-extraction-of-various-compounds-scientific-reports\/","title":{"rendered":"Investigation and characterization of changes in potato peels by thermochemical acidic pre-treatment for extraction of various compounds – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Salam, M. et al.<\/i> Exploring the role of Black Soldier Fly Larva technology for sustainable management of municipal solid waste in developing countries. Environ. Technol. Innov.<\/i> 24<\/b>, 101934\u2013101987. https:\/\/doi.org\/10.1016\/j.eti.2021.101934<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Siddiqua, A., Hahladakis, J. N. & Al-Attiya, W. A. K. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res.<\/i> 29<\/b>, 58514\u201358536. https:\/\/doi.org\/10.1007\/s11356-022-21578-z<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mushtaq, Q., Irfan, M., Tabssum, F. & IqbalQazi, J. Potato peels: A potential food waste for amylase production. J. of Food Process Eng.<\/i> 40<\/b>, e12512-12519. https:\/\/doi.org\/10.1111\/jfpe.12512<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Irfan, M., Mushtaq, Q., Tabssum, F., Shakir, H. A. & Qazi, J. I. Carboxymethylcellulase production optimization from newly isolated thermophilic Bacillus subtilis<\/i> K-18 for saccharification using response surface methodology. AMB Express.<\/i> 7<\/b>, 1\u20139. https:\/\/doi.org\/10.1186\/s13568-017-0331-3<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chohan, N. A., Aruwajoye, G. S., Sewsynker-Sukai, Y. & Kana, E. G. Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment. Renew. Energ.<\/i> 146<\/b>, 1031\u20131040. https:\/\/doi.org\/10.1016\/j.renene.2019.07.042<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sawicka, B., Skiba, D. & Barbas, P. Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals<\/i> 1st edn, 19\u201337 (Springer, 2022).<\/p>\n

    Book<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    FAO, SAVE FOOD. Global initiative on food loss and waste reduction (2015). http:\/\/www.fao.org\/3\/ai4068e.pdf<\/a>. 25, p. 2018.<\/p>\n<\/li>\n

  • \n

    FAO. Food Wastage Footprint: Impacts on Natural Resources: Summary Report (2013). http:\/\/site.ebrary.com\/id\/10815985<\/a><\/p>\n<\/li>\n

  • \n

    FAO (2013, 2016). Agriculture Organization of the United Nations Statistics Division<\/i>. Economic and Social Development Department, Rome, Italy. http:\/\/faostat3.fao.org\/home\/E<\/a>. Accessed 31 December 2016.<\/p>\n<\/li>\n

  • \n

    Schieber, A., Stintzing, F. C. & Carle, R. By-products of plant food processing as a source of functional compounds\u2014Recent developments. Trends Food Sci. Technol.<\/i> 2001<\/b>(12), 401\u2013413. https:\/\/doi.org\/10.1016\/S0924-2244(02)00012-2<\/a> (2001).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Arapoglou, D., Varzakas, T., Vlyssides, A. & Israilides, C. J. W. M. Ethanol production from potato peel waste (PPW). Waste Manag.<\/i> 30<\/b>, 1898\u20131902. https:\/\/doi.org\/10.1016\/j.wasman.2010.04.017<\/a> (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abeyrathne, E. D. N. S., Nam, K., Huang, X. & Ahn, D. U. Plant-and animal-based antioxidants\u2019 structure, efficacy, mechanisms, and applications: a review. Antioxidants.<\/i> 11<\/b>, 1025\u20131043. https:\/\/doi.org\/10.3390\/antiox11051025<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Hadary, A. R. E., Sulieman, A. M. & El-Shorbagy, G. A. Comparative effects of hibiscus leaves and potato peel extracts on characteristics of fermented orange juice. J. Food Qual. Hazards Control.<\/i> 2023<\/b>(10), 39\u201350. https:\/\/doi.org\/10.18502\/jfqhc.10.1.11988<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tlay, R. H., Abdul-Abbas, S. J., El-Maksoud, A. A. A., Altemimi, A. B. & Abedelmaksoud, T. G. Functional biscuits enriched with potato peel powder: Physical, chemical, rheological, and antioxidants properties. Food Syst.<\/i> 6<\/b>, 53\u201363. https:\/\/doi.org\/10.21323\/2618-9771-2023-6-1-53-63<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Brahmi, F. et al.<\/i> Optimization of conventional extraction parameters for recovering phenolic compounds from potato (Solanumtuberosum<\/i> L.) peels and their application as an antioxidant in yogurt formulation. Antioxidants<\/i> 11<\/b>, 1401\u20131422. https:\/\/doi.org\/10.3390\/antiox11071401<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    de Andrade Lima, M., Andreou, R., Charalampopoulos, D. & Chatzifragkou, A. Supercritical carbon dioxide extraction of phenolic compounds from potato (Solanum tuberosum<\/i>) peels. Appl. Sci.<\/i> 11<\/b>, 3410\u20133428. https:\/\/doi.org\/10.3390\/app11083410<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jimenez-Champi, D., Romero-Orejon, F. L., Moran-Reyes, A., Mu\u00f1oz, A. M. & Ramos-Escudero, F. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: A review. CyTA-J. Food<\/i> 21<\/b>, 418\u2013432. https:\/\/doi.org\/10.1080\/19476337.2023.2213746<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rodr\u00edguez-Mart\u00ednez, B., Coelho, E., Gull\u00f3n, B., Y\u00e1\u00f1ez, R. & Domingues, L. Potato peels waste as a sustainable source for biotechnological production of biofuels: Process optimization. Waste Manag.<\/i> 155<\/b>, 320\u2013328. https:\/\/doi.org\/10.1016\/j.wasman.2022.11.007<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Soltaninejad, A., Jazini, M. & Karimi, K. Sustainable bioconversion of potato peel wastes into ethanol and biogas using organosolv pretreatment. Chemosphere.<\/i> 2022<\/b>(291), 133003. https:\/\/doi.org\/10.1016\/j.chemosphere.2021.133003<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sujeeta, K. M., Mehta, S. & Sihag, K. Optimization of conditions for bioethanol production from potato peel waste. Int. J. Chem. Stud.<\/i> 6<\/b>, 2021\u20132026 (2018).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maldonado, A. F. S., Mudge, E., Ganzle, M. G. & Schieber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water\/ethanol-based solvents. Food Res. Int.<\/i> 65<\/b>, 27\u201334 (2014).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, M. S., Zhao, Y. & Yu, S. J. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem.<\/i> 172<\/b>, 543\u2013550 (2015).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Singh, P. P. & Saldana, M. D. A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int.<\/i> 44<\/b>, 2452\u20132458 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alvarez, V. H., Cahyadi, J., Xu, D. Y. & Saldana, M. D. A. Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. J. Supercrit. Fluids.<\/i> 90<\/b>, 8\u201317 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lantero, O. J., Li, M., & Shetty, J. K. Genencor International Inc. Process for conversion of granular starch to ethanol (2011). U.S. Patent 7968318 (filed September 15, 2011).<\/p>\n<\/li>\n

  • \n

    Betiku, E. & Taiwo, A. E. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzatevis- a-vis response surface methodology and artificial neural network. Renew. Energy<\/i> 74<\/b>, 87\u201394. https:\/\/doi.org\/10.1016\/j.renene.2014.07.054<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maiti, B., Rathore, A., Srivastava, S., Shekhawat, M. & Srivastava, P. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis<\/i> using response surface methodology and genetic algorithm. Appl. Microbiol. Biotechnol.<\/i> 90<\/b>, 385\u2013395. https:\/\/doi.org\/10.1007\/s00253-011-3158-x<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abdulgader, M., Yu, J., Zinatizadeh, A. A., Williams, P. & Rahimi, Z. Process analysis and optimization of single stage flexible fibre biofilm reactor treating milk processing industrial wastewater using response surface methodology (RSM). Chem. Eng. Res. Des.<\/i> 149<\/b>, 169\u2013181. https:\/\/doi.org\/10.1016\/j.cherd.2019.07.011<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Y\u0131lmaz, \u015e & \u015eahan, T. Utilization of pumice for improving biogas production from poultry manure by anaerobic digestion: A modeling and process optimization study using response surface methodology. Biomass Bioenerg.<\/i> 2020<\/b>(138), 105601\u2013105611. https:\/\/doi.org\/10.1016\/j.biombioe.2020.105601<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chaudhary, A. et al.<\/i> Pomegranate peels waste hydrolyzate optimization by Response Surface Methodology for Bioethanol production. Saudi J. Biol. Sci.<\/i> 2021<\/b>(28), 4867\u20134875. https:\/\/doi.org\/10.1016\/j.sjbs.2021.06.081<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dahunsi, S. O. Liquefaction of pineapple peel: Pretreatment and process optimization. Energy<\/i> 185<\/b>, 1017\u20131031. https:\/\/doi.org\/10.1016\/j.energy.2019.07.123<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Saleem, A. et al.<\/i> Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Convers. Biorefin.<\/i> 12<\/b>, 1513\u20131524. https:\/\/doi.org\/10.1007\/s13399-020-01117-x<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Aissi, F. Z., El Hadi, D., Megateli, S. & Ketfi, S. Statistical optimization of pretreatment of orange processing waste using response surface methodology for bioethanol production. Energy Sources A: Recov. Util. Environ. Eff.<\/i> 43<\/b>, 1\u201315. https:\/\/doi.org\/10.1080\/15567036.2021.1967519<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Joly, N., Souidi, K., Depraetere, D., Wils, D. & Martin, P. Potato by-products as a source of natural Chlorogenic acids and phenolic compounds: Extraction, characterization, and antioxidant capacity. Molecules<\/i> 26<\/b>, 177\u2013192. https:\/\/doi.org\/10.3390\/molecules26010177<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rodr\u00edguez-Mart\u00ednez, B., Gull\u00f3n, B. & Y\u00e1\u00f1ez, R. Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants.<\/i> 10<\/b>, 1630. https:\/\/doi.org\/10.3390\/antiox10101630<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Salem, M. A. et al.<\/i> Valorization of by-products Derived from Onions and Potato: Extraction Optimization, Metabolic Profile, Outstanding Bioactivities, and Industrial Applications. Waste Biomass Valorization<\/i> 14<\/b>, 1\u201336. https:\/\/doi.org\/10.1007\/s12649-022-02027-x<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    AOAC. Official Methods of Analysis Association of Official Analytical Chemists International<\/i> 19th edn. (Maryland, 2005).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem.<\/i> 31<\/b>, 426\u2013428 (1959).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem.<\/i> 28<\/b>, 350\u2013356 (1956).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sanz, V. C., Mena, M. L., Gonz\u00e1lez-Cort\u00e9s, A., Yanez-Sedeno, P. & Pingarr\u00f3n, J. M. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal. Chim. Acta.<\/i> 528<\/b>, 1\u20138. https:\/\/doi.org\/10.1016\/j.aca.2004.10.007<\/a> (2005).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Irfan, M. et al.<\/i> Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste Biomass Valorization.<\/i> 7<\/b>, 1389\u20131396. https:\/\/doi.org\/10.1007\/s12649-016-9540-2<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kpanja, E. J., Duru, S., Omage, J. J., Sekoni, A. A. & Gonjoh, P. T. Proximate composition, anti\u2013nutritional factors and the effect of Irish potato (Solanum tuberosum<\/i> L.) peels on the performance and carcass characteristics of broiler chickens. Niger. J. Anim. Sci.<\/i> 21<\/b>(2), 214\u2013222 (2019).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Badr, S. A. & El-Waseif, M. A. Effect of dietary fiber in potato peels powder addition as fat replacer on quality char-acteristics and energy value of beef meatballs. J. Biol. Chem. Environ. Sci.<\/i> 13<\/b>(1), 145\u2013160 (2018).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Adegunloye, D. V. & Oparinde, T. C. Effects of fermentation on the proximate composition of Irish (Solanum tuberosum<\/i>) and sweet potato (Ipomoea batatas<\/i>) peels. Adv. Microbiol.<\/i> 7<\/b>(7), 565\u2013574 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maxwell, O. I., Chinwuba, U. B. & Onyebuchukwu, M. G. Protein enrichment of potato peels using Saccharomyces cerevisiae <\/i>via solid-state fermentation process. Adva. Chem. Eng. Sci.<\/i> 9<\/b>(1), 99\u2013108 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Onuguh, I. C., Ikhuoria, E. U. & Obibuzo, J. U. Assessing the potentials of some agro-waste peels through proximate analysis. Int. J. Agric. Anim. Prod.<\/i> 2<\/b>(02), 1\u20136 (2022).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rowayshed, G., Sharaf, A. M., El-Faham, S. Y., Ashour, M. & Zaky, A. A. Utilization of potato peels extract as source of phytochemicals in biscuits. J. Basic Appl. Res. Int.<\/i> 8<\/b>(3), 190\u2013201 (2015).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khawla, B. J. et al.<\/i> Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Ind. Crops Prod.<\/i> 52<\/b>, 144\u2013149 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, G. Y. et al.<\/i> Evaluation of structural, functional, and anti-oxidant potential of differentially extracted polysaccharides from potatoes peels. Int. J. Biol. Macromol.<\/i> 129<\/b>, 778\u2013785 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Malakar, B., Das, D. & Mohanty, K. Optimization of glucose yield from potato and sweet lime peel waste through different pre-treatment techniques along with enzyme assisted hydrolysis towards liquid biofuel. Renew. Energy<\/i> 145<\/b>, 2723\u20132732 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Atitallah, I. B. et al.<\/i> On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus<\/i>. Bioresour. Technol.<\/i> 289<\/b>, 121614 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mushtaq, Q., Joly, N., Martin, P. & Qazi, J. I. Optimization of alkali treatment for production of fermentable sugars and phenolic compounds from potato peel waste using topographical characterization and FTIR spectroscopy. Molecules.<\/i> 28<\/b>, 7250\u20137269. https:\/\/doi.org\/10.3390\/molecules28217250<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bhattacharyya, S., Chakraborty, S., Datta, S., Drioli, E. & Bhattacharjee, C. Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization. Environ. Technol.<\/i> 34<\/b>, 1077\u20131084. https:\/\/doi.org\/10.1080\/09593330.2012.733965<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Achinas, S., Li, Y., Achinas, V. & Euverink, G. J. W. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies<\/i> 12<\/b>, 2311\u20132326. https:\/\/doi.org\/10.3390\/en12122311<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ben Taher, I., Fickers, P., Chniti, S. & Hassouna, M. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog.<\/i> 33<\/b>, 397\u2013406. https:\/\/doi.org\/10.1002\/btpr.2427<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rao, M. M., Ramesh, A., Rao, G. P. C. & Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra<\/i> hulls. J. Hazard. Mater.<\/i> 129<\/b>(1\u20133), 123\u2013129 (2006).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ahmed, M. J. K., Ahmaruzzaman, M. & Reza, R. A. Lignocellulosic-derived modified agricultural waste: Development, characterisation and implementation in sequestering pyridine from aqueous solutions. J. Colloid Interface Sci.<\/i> 428<\/b>, 222\u2013234 (2014).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J. & Ismadji, S. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. J. Hazard. Mater.<\/i> 146<\/b>(1\u20132), 237\u2013242 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zheng, Y. et al.<\/i> Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property. Inorg. Chem.<\/i> 46<\/b>(16), 6675\u20136682 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bouhadjra, K., Lemlikchi, W. & Oubagha, N. Valorisation des pelures de pommes de terre pour le traitement d\u2019une solution aqueuse contenant un colorant textile (Reactive Blue 72). J. Water Environ. Sci.<\/i> 1<\/b>, 219\u2013229 (2017).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chakraborty, M., Miao, C., McDonald, A. & Chen, S. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana<\/i> using a unique sequential hydrothermal extraction technology. Fuel<\/i> 95<\/b>, 63\u201370 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kandhola, G. et al.<\/i> Maximizing production of cellulose nanocrystals and nanofibers from pre-extracted loblolly pine kraft pulp: A response surface approach. Bioresour. Bioprocess.<\/i> 7<\/b>, 1\u201316 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bouhadjra, K., Lemlikchi, W., Ferhati, A. & Mignard, S. Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder. Sci. Rep.<\/i> 11<\/b>, 2090\u20132099. https:\/\/doi.org\/10.1038\/s41598-020-79069-5<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Azazy, M. et al.<\/i> Potato peels as an adsorbent for heavy metals from aqueous solutions: Eco-structuring of a green adsorbent operating Plackett-Burman design. J. Chem.<\/i> 2019<\/b>(2019), 1\u201314 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hassan, M. L., Mathew, A. P., Hassan, E. A. & Oksman, K. Effect of pretreatment of bagasse pulp on properties of isolated nanofibers and nanopaper sheets. Wood Fiber Sci.<\/i> 2010<\/b>, 362\u2013376 (2010).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gong, J., Li, J., Xu, J., Xiang, Z. & Mo, L. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv.<\/i> 7<\/b>(53), 33486\u201333493 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fang, W. et al.<\/i> Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization. Bioresour. Technol.<\/i> 168<\/b>, 167\u2013172 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, S., Lin, A. H. M., Han, Q. & Xu, Q. Evaluation of direct ultrasound-assisted extraction of phenolic compounds from potato peels. Processes.<\/i> 8<\/b>, 1665\u20131679. https:\/\/doi.org\/10.3390\/pr8121665<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Frontuto, D. et al.<\/i> Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food Bioprocess Technol.<\/i> 12<\/b>, 1708\u20131720. https:\/\/doi.org\/10.1007\/s11947-019-02320-z<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sanusi, I. et al.<\/i> A novel autoclave-assisted nanoparticle pre-treatment for improved sugar recovery from potato peel waste: process optimisation, nanoparticle recyclability and bioethanol production. Biomass Convers. Biorefin.<\/i> 12<\/b>, 1\u201313. https:\/\/doi.org\/10.1007\/s13399-022-03574-y<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Atitallah, I., Antonopoulou, G., Ntaikou, I., Alexandropoulou, M., Nasri, M., Mechichi, T., Lyberatos, G. Potato peels waste as feedstock for bioethanol production: a comparison of chemical. Therm. Enzym. Pretreatm.<\/i> 2021, 1\u201315. https:\/\/www.researchgate.net\/publication\/350801701<\/a>.<\/p>\n<\/li>\n

  • \n

    Utekar, P. G., Kininge, M. M. & Gogate, P. R. Intensification of delignification and enzymatic hydrolysis of orange peel waste using ultrasound for enhanced fermentable sugar production. Chem. Eng. Process. Process Intensif.<\/i> 168<\/b>, 108556\u2013108567. https:\/\/doi.org\/10.1016\/j.cep.2021.108556<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dutta, A., Kininge, M. M. & Gogate, P. R. Intensification of delignification and subsequent hydrolysis of sustainable waste as banana peels for the HMF production using ultrasonic irradiation. Chem. Eng. Process. Process Intensif.<\/i> 183<\/b>, 109247. https:\/\/doi.org\/10.1016\/j.cep.2022.109247<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jusoh, N. A., Karim, L., & Omar, S. R. Pretreatment and enzymatic saccharification of mango peel for sugar production. AJFAS<\/i>. 1<\/b>, 1\u201315 (2020).http:\/\/myjms.mohe.gov.my\/index.php\/ajfas<\/a><\/p>\n<\/li>\n

  • \n

    Tripathy, A., Patel, M. K. & Chakraborty, S. Microbial production of dextran using pineapple waste extract: a two-step statistical optimization of submerged fermentation conditions and structural characterization. Biotechnol. Bioprocess Eng.<\/i> 2024<\/b>, 1\u201317 (2024).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n