{"id":603396,"date":"2024-05-31T20:00:00","date_gmt":"2024-06-01T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/engineering-natural-microbiomes-toward-enhanced-bioremediation-by-microbiome-modeling-nature-communications\/"},"modified":"2024-06-01T19:56:51","modified_gmt":"2024-06-01T23:56:51","slug":"engineering-natural-microbiomes-toward-enhanced-bioremediation-by-microbiome-modeling-nature-communications","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/engineering-natural-microbiomes-toward-enhanced-bioremediation-by-microbiome-modeling-nature-communications\/","title":{"rendered":"Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling – Nature Communications","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science<\/i> 332<\/b>, 970\u2013974 (2011).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature<\/i> 489<\/b>, 220\u2013230 (2012).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Greenhalgh, K., Meyer, K. M., Aagaard, K. M. & Wilmes, P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ. Microbiol.<\/i> 18<\/b>, 2103\u20132116 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol.<\/i> 11<\/b>, 789\u2013799 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants<\/i> 4<\/b>, 247\u2013257 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao, M. et al. Integrated Meta\u2013omics Approaches To Understand The Microbiome Of Spontaneous Fermentation Of Traditional Chinese Pu\u2013erh Tea. mSystems<\/i> 4<\/b>, e00680\u201319 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol.<\/i> 17<\/b>, 796\u2013815 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Widdig, M. et al. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biol. Biochem.<\/i> 151<\/b>, 1467\u20131477 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M. C. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol. Lett.<\/i> 24<\/b>, 208\u2013218 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self\u2013mediate electron transfer. Appl. Environ. Microbiol.<\/i> 70<\/b>, 5373\u20135382 (2004).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bhatia, S. K., Kim, S. H., Yoon, J. J. & Yang, Y. H. Current status and strategies for second generation biofuel production using microbial systems. Energ. Convers. Manag.<\/i> 148<\/b>, 1142\u20131156 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jiang, Y., Dong, W., Xin, F. & Jiang, M. Designing synthetic microbial consortia for biofuel production. Trends Biotechnol.<\/i> 38<\/b>, 828\u2013831 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, M. et al. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J.<\/i> 8<\/b>, 1932\u20131944 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hu, S. et al. A synergistic consortium involved in Rac-dichlorprop degradation as revealed by DNA-stable isotope probing and metagenomics analysis. Appl. Environ. Microbiol.<\/i> 87<\/b>, e01562\u201321 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cheng, M. et al. Oxygenases as powerful weapons in the microbial degradation of pesticides. Annu. Rev. Microbiol.<\/i> 76<\/b>, 325\u2013348 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wanapaisan, P. et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment\u2013derived bacterial consortium. J. Hazard. Mater.<\/i> 342<\/b>, 561\u2013570 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dejonghe, W. et al. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron\u2013degrading Variovorax<\/i> strain. Appl. Environ. Microbiol.<\/i> 69<\/b>, 1532\u20131541 (2003).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hennessee, C. T. & Li, Q. X. Effects of polycyclic aromatic hydrocarbon mixtures on degradation, gene expression, and metabolite production in four Mycobacterium<\/i> species. Appl. Environ. Microbiol.<\/i> 82<\/b>, 3357\u20133369 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Burm\u00f8lle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol.<\/i> 72<\/b>, 3916\u20133923 (2006).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA.<\/i> 111<\/b>, E2149\u2013E2156 (2014).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Roucher, A. et al. From Compartmentalization Of Bacteria Within Inorganic Macrocellular Beads To The Assembly Of Microbial Consortia. Adv. Biosyst.<\/i> 2<\/b>, 1700233 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Opatovsky, I. et al. Modeling trophic dependencies and exchanges among insects\u2019 bacterial symbionts in a host\u2013simulated environment. BMC Genomics<\/i> 19<\/b>, 1\u201314 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, X. et al. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME J.<\/i> 13<\/b>, 494\u2013508 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol.<\/i> 17<\/b>, 725\u2013741 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Prina, M. G., Manzolini, G., Moser, D., Nastasi, B. & Sparber, W. Classification and challenges of bottom\u2013up energy system models\u2014A review. Renew. Sust. Energ. Rev.<\/i> 129<\/b>, 109917 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bernstein, H. C. Reconciling ecological and engineering design principles for building microbiomes. mSystems<\/i> 4<\/b>, e00106\u2013e00119 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Thingstad, T. F. & V\u00e5ge, S. Host\u2013virus\u2013predator coexistence in a grey\u2013box model with dynamic optimization of host fitness. ISME J.<\/i> 13<\/b>, 3102\u20133111 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chang, C. Y. et al. Engineering complex communities by directed evolution. Nat. Ecol. Evol.<\/i> 5<\/b>, 1011\u20131023 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schneijderberg, M. et al. Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana<\/i> and co\u2013occurring plant species with a longer life history. ISME J.<\/i> 14<\/b>, 2433\u20132448 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Beckmann, S. et al. Long\u2013term succession in a coal seam microbiome during in situ biostimulation of coalbed\u2013methane generation. ISME J.<\/i> 13<\/b>, 632\u2013650 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zu\u00f1iga, C., Zaramela, L. & Zengler, K. Elucidation of complexity and prediction of interactions in microbial communities. Microb. Biotechnol.<\/i> 10<\/b>, 1500\u20131522 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Henry, C. S. et al. Microbial community metabolic modeling: a community data\u2013driven network reconstruction. J. Cell. Physiol.<\/i> 231<\/b>, 2339\u20132345 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Garc\u00eda\u2013Jim\u00e9nez, B., Torres\u2013Bacete, J. & Nogales, J. Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J.<\/i> 19<\/b>, 226\u2013246 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rocha, M. et al. Natural computation meta\u2013heuristics for the in silico optimization of microbial strains. BMC Bioinforma.<\/i> 9<\/b>, 499 (2008).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chan, S. H. J., Cai, J., Wang, L., Simons\u2013Senftle, M. N. & Maranas, C. D. Standardizing biomass reactions and ensuring complete mass balance in genome\u2013scale metabolic models. Bioinformatics<\/i> 33<\/b>, 3603\u20133609 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mundy, M., Mendes\u2013Soares, H. & Chia, N. Mackinac: A bridge between ModelSEED and COBRApy to generate and analyze genome\u2013scale metabolic models. Bioinformatics<\/i> 33<\/b>, 2416\u20132418 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wei, D., Kameya, T. & Urano, K. Environmental management of pesticidal POPs in China: Past, present and future. Environ. Int.<\/i> 33<\/b>, 894\u2013902 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Noyes, P. D. et al. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int.<\/i> 35<\/b>, 971\u2013986 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alharbi, O. M. L., Basheer, A. A., Khattab, R. A. & Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq.<\/i> 263<\/b>, 442\u2013453 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gavrilescu, M., Demnerov\u00e1, K., Aamand, J., Agathos, S. & Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. N. Biotechnol.<\/i> 32<\/b>, 147\u2013156 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tesfamichael, A. A. & Kaluarachchi, J. J. A methodology to assess the risk of an existing pesticide and potential future pesticides for regulatory decision\u2013making. Environ. Sci. Policy<\/i> 9<\/b>, 275\u2013290 (2006).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Peterson, R. K. D. & Hulting, A. G. A comparative ecological risk assessment for herbicides used on spring wheat: the effect of glyphosate when used within a glyphosate\u2013tolerant wheat system. Weed Sci.<\/i> 52<\/b>, 834\u2013844 (2004).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Buhl, K. J. & Faerber, N. L. Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius<\/i>. Arch. Environ. Contam. Toxicol.<\/i> 18<\/b>, 530\u2013536 (1989).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rosic, N., Bradbury, J., Lee, M., Baltrotsky, K. & Grace, S. The impact of pesticides on local waterways: A scoping review and method for identifying pesticides in local usage. Environ. Sci. Policy<\/i> 106<\/b>, 12\u201321 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pizl, V. Interactions between earthworms and herbicides. I. Toxicity of some herbicides to earthworms in laboratory tests. Pedobiologia<\/i> 32<\/b>, 3\u20134 (1988).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Golovleva, L. A., Pertsova, R. N., Kunc, F. & Vokounov\u00e1, M. Decomposition of the herbicide bromoxynil in soil and in bacterial cultures. Folia Microbiol.<\/i> 33<\/b>, 491\u2013499 (1988).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Holtze, M. S., S\u00f8rensen, S. R., S\u00f8rensen, J. & Aamand, J. Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments\u2014Insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ. Pollut.<\/i> 154<\/b>, 155\u2013168 (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, K. et al. An essential esterase (BroH) for the mineralization of bromoxynil octanoate by a natural consortium of Sphingopyxis<\/i> sp. strain OB-3 and Comamonas<\/i> sp. strain 7D-2. J. Agric. Food Chem.<\/i> 61<\/b>, 11550\u201311559 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Knossow, N., Siebner, H. & Bernstein, A. Isotope Fractionation (\u03b413<\/sup>C, \u03b415<\/sup>N) in the microbial degradation of bromoxynil by aerobic and anaerobic soil enrichment cultures. J. Agric. Food Chem.<\/i> 68<\/b>, 1546\u20131554 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Achermann, S., Mansfeldt, C. B., M\u00fcller, M., Johnson, D. R. & Fenner, K. Relating Metatranscriptomic profiles to the micropollutant biotransformation potential of complex microbial communities. Environ. Sci. Technol.<\/i> 54<\/b>, 235\u2013244 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ruan, Z. et al. Comparative genomic analysis of Pseudoxanthomonas<\/i> sp. X-1, a bromoxynil octanoate degrading bacterium, and Its Related Type Strains. Curr. Microbiol.<\/i> 79<\/b>, 65 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, K. et al. Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol. Microbiol.<\/i> 89<\/b>, 1121\u20131139 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, K. et al. Comparative transcriptome analysis reveals the mechanism underlying 3,5\u2013dibromo\u20134\u2013hydroxybenzoate catabolism via a new oxidative decarboxylation pathway. Appl. Environ. Microbiol.<\/i> 84<\/b>, 1\u201316 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, Z. et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant\u2013induced systemic resistance. Microbiome<\/i> 9<\/b>, 217 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol.<\/i> 20<\/b>, 109\u2013121 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA.<\/i> 114<\/b>, E2450\u2013E2459 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Taylor, B. C. et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems<\/i> 5<\/b>, e00901\u2013e00919 (2020).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Berg, G. et al. Microbiome definition re\u2013visited: old concepts and new challenges. Microbiome<\/i> 8<\/b>, 103 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Javdan, B. et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell<\/i> 181<\/b>, 1661\u20131679.e22 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar, V., Baweja, M., Singh, P. K. & Shukla, P. Recent developments in systems biology and metabolic engineering of plant\u2013microbe interactions. Front. Plant Sci.<\/i> 7<\/b>, 1421 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science<\/i> 361<\/b>, 469\u2013474 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze\u2013Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol.<\/i> 64<\/b>, 807\u2013838 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maignien, L., DeForce, E. A., Chafee, M. E., Murat Eren, A. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana<\/i> phyllosphere communities. MBio<\/i> 5<\/b>, e00682\u2013e00713 (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, Y., Hou, Q., Liu, W., Meng, Y. & Wang, G. Dynamic changes of bacterial community under bioremediation with Sphingobium<\/i> sp. LY-6 in buprofezin-contaminated Soil. Bioprocess. Biosyst. Eng.<\/i> 38<\/b>, 1485\u20131493 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, M. et al. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ. Pollut.<\/i> 223<\/b>, 657\u2013664 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, L. H. et al. Endophytic Phthalate-degrading Bacillus subtilis<\/i> N-1-gfp<\/i> colonizing in soil-crop system shifted indigenous bacterial community to remove di-n-butyl phthalate. J. Hazard. Mater.<\/i> 449<\/b>, 130993 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pacwa-P\u0142ociniczak, M., Czapla, J., P\u0142ociniczak, T. & Piotrowska-Seget, Z. The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis<\/i> strains on removal of petroleum from soil. Ecotoxicol. Environ. Saf.<\/i> 169<\/b>, 615\u2013622 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, S. et al. Soil bacterial community dynamics following bioaugmentation with Paenarthrobacter<\/i> sp. W11 in atrazine-contaminated soil. Chemosphere<\/i> 282<\/b>, 130976 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dai, Y., Li, N., Zhao, Q. & Xie, S. Bioremediation using Novosphingobium<\/i> strain DY4 for 2, 4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation<\/i> 26<\/b>, 161\u2013170 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res.<\/i> 19<\/b>, 29\u201337 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abdullaeva, Y., Ambika Manirajan, B., Honermeier, B., Schnell, S. & Cardinale, M. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J. Adv. Res.<\/i> 31<\/b>, 75\u201386 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, X., Chen, K., Chuang, S., Xu, X. & Jiang, J. Shift in bacterial community structure drives different atrazine\u2013degrading efficiencies. Front. Microbiol.<\/i> 10<\/b>, 88 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kost, C., Patil, K. R., Friedman, J., Garcia, S. L. & Ralser, M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat. Microbiol.<\/i> 8<\/b>, 2244\u20132252 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    LaSarre, B., McCully, A. L., Lennon, J. T. & McKinlay, J. B. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J.<\/i> 11<\/b>, 337\u2013348 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sch\u00e4fer, M. et al. Metabolic interaction models recapitulate leaf microbiota ecology. Science<\/i> 381<\/b>, eadf5121 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yu, J. S. L. et al. Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance. Nat. Microbiol.<\/i> 7<\/b>, 542\u2013555 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ryback, B., Bortfeld-Miller, M. & Vorholt, J. A. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. ISME J.<\/i> 16<\/b>, 2712\u20132724 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ge, Z. B. et al. Two-tiered mutualism improves survival and competitiveness of cross-feeding soil bacteria. ISME J.<\/i> 17<\/b>, 2090\u20132102 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, X. et al. Nitrogen transfer and cross-feeding between Azotobacter chroococcum<\/i> and Paracoccus aminovorans<\/i> promotes pyrene degradation. ISME J.<\/i> 17<\/b>, 2169\u20132181 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao, Y. et al. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat. Commun.<\/i> 14<\/b>, 5394 (2023).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol.<\/i> 33<\/b>, 1061\u20131072 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Takahashi, M. K. et al. A low\u2013cost paper\u2013based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun.<\/i> 9<\/b>, 3347 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    St John, P. C. & Bomble, Y. J. Approaches to computational strain design in the multiomics era. Front. Microbiol.<\/i> 10<\/b>, 597 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Keshava, R., Mitra, R., Gope, M. L. & Gope, R. Synthetic biology: Overview and Applications. Omics Technol. Bio\u2013Eng.: Towards Improv. Qual. Life<\/i> 1<\/b>, 63\u201393 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Suzuki, K. et al. In vivo genome editing via CRISPR\/Cas9 mediated homology\u2013independent targeted integration. Nature<\/i> 540<\/b>, 144\u2013149 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR\u2013Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol.<\/i> 38<\/b>, 824\u2013844 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Casini, A., Storch, M., Baldwin, G. S. & Ellis, T. Bricks and blueprints: Methods and standards for DNA assembly. Nat. Rev. Mol. Cell Biol.<\/i> 16<\/b>, 568\u2013576 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liang, J., Luo, Y. & Zhao, H. Synthetic biology: Putting synthesis into biology. Wiley Interdiscip. Rev. Syst. Biol. Med.<\/i> 3<\/b>, 7\u201320 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hughes, R. A. & Ellington, A. D. Synthetic DNA synthesis and assembly: Putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol.<\/i> 9<\/b>, a023812 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Callahan, B. J. et al. DADA2: High\u2013resolution sample inference from Illumina amplicon data. Nat. Methods<\/i> 13<\/b>, 581\u2013583 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol.<\/i> 37<\/b>, 852\u2013857 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web\u2013based tools. Nucleic Acids Res.<\/i> 41<\/b>, D590\u2013D596 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra<\/i>) gastrointestinal microbiomes. ISME J.<\/i> 7<\/b>, 1344\u20131353 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schloss, P. D. et al. Introducing mothur: Open\u2013source, platform\u2013independent, community\u2013supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.<\/i> 75<\/b>, 7537\u20137541 (2009).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol.<\/i> 12<\/b>, R60 (2011).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics<\/i> 31<\/b>, 1674\u20131676 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform.<\/i> 11<\/b>, 119 (2010).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics<\/i> 22<\/b>, 1658\u20131659 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics<\/i> 25<\/b>, 1966\u20131967 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods<\/i> 12<\/b>, 59\u201360 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res.<\/i> 47<\/b>, D309\u2013D314 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res.<\/i> 28<\/b>, 27\u201330 (2000).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics<\/i> 30<\/b>, 2114\u20132120 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol.<\/i> 13<\/b>, e1005595 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lomsadze, A. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res.<\/i> 33<\/b>, 6494\u20136506 (2005).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res.<\/i> 49<\/b>, 9077\u20139096 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res.<\/i> 35<\/b>, 3100\u20133108 (2007).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res.<\/i> 42<\/b>, D26\u2013D31 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Henry, C. S. et al. High\u2013throughput generation, optimization and analysis of genome\u2013scale metabolic models. Nat. Biotechnol.<\/i> 28<\/b>, 977\u2013982 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context\u2013specific metabolic network models. PLoS Comput. Biol.<\/i> 10<\/b>, e1003424 (2014).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Heirendt, L. et al. Creation and analysis of biochemical constraint\u2013based models using the COBRA Toolbox v.3.0. Nat. Protoc.<\/i> 14<\/b>, 639\u2013702 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and Metagenome sequences. J. Mol. Biol.<\/i> 428<\/b>, 726\u2013731 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res.<\/i> 47<\/b>, D506\u2013D515 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bateman, A. et al. UniProt: A hub for protein information. Nucleic Acids Res.<\/i> 43<\/b>, D204\u2013D412 (2015).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Norsigian, C. J. et al. BiGG Models 2020: Multi\u2013strain genome\u2013scale models and expansion across the phylogenetic tree. Nucleic Acids Res.<\/i> 48<\/b>, D402\u2013D406 (2020).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, I. M. A. et al. IMG\/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res.<\/i> 47<\/b>, D666\u2013D677 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes\u2013a 2019 update. Nucleic Acids Res.<\/i> 48<\/b>, D445\u2013D453 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chan, S. H. J., Simons, M. N. & Maranas, C. D. SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Comput. Biol.<\/i> 13<\/b>, e1005539 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lewis, N. E. et al. Omic data from evolved E. coli<\/i> are consistent with computed optimal growth from genome\u2013scale models. Mol. Syst. Biol.<\/i> 6<\/b>, 390 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tjaden, B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol.<\/i> 16<\/b>, 1 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol.<\/i> 11<\/b>, R25 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ruan, Z. P. et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. GitHub<\/i> https:\/\/doi.org\/10.5072\/zenodo.53095<\/a> (2023).<\/p>\n<\/li>\n