{"id":510106,"date":"2024-02-08T19:00:00","date_gmt":"2024-02-09T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/wearable-respiratory-sensors-for-health-monitoring-npg-asia-materials\/"},"modified":"2024-02-08T20:20:51","modified_gmt":"2024-02-09T01:20:51","slug":"wearable-respiratory-sensors-for-health-monitoring-npg-asia-materials","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/wearable-respiratory-sensors-for-health-monitoring-npg-asia-materials\/","title":{"rendered":"Wearable respiratory sensors for health monitoring – NPG Asia Materials","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Wang, C., Yin, L., Zhang, L., Xiang, D. & Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors<\/i> 10<\/b>, 2088\u20132106 (2010).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Phillips, M. Breath tests in medicine. Sci. Am.<\/i> 267<\/b>, 74\u20139 (1992). 1992.<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Phillips, M. et al. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B<\/i> 729<\/b>, 75\u201388 (1999).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fenske, J. D. & Paulson, S. E. Human breath emissions of VOCs. J. Air Waste Manag. Assoc.<\/i> 49<\/b>, 594\u2013598 (1999).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mathew, T. L., Pownraj, P., Abdulla, S. & Pullithadathil, B. Technologies for clinical diagnosis using expired human breath analysis. Diagnostics (Basel, Switzerland)<\/i> 5<\/b>, 27\u201360 (2015).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Righettoni, M., Amann, A. & Pratsinis, S. E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today<\/i> 18<\/b>, 163\u2013171 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou, X. R. et al. Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett.<\/i> 29<\/b>, 405\u2013416 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceramics<\/i> 7<\/b>, 143\u2013167 (2001).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B. & Habchi, R. A review on flexible gas sensors: from materials to devices. Sens. Actuators A Phys.<\/i> 284<\/b>, 209\u2013231 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alsyouri, H. M. & Lin, J. Y. S. Gas diffusion and microstructural properties of ordered mesoporous silica fibers. J. Phys. Chem. B<\/i> 109<\/b>, 13623\u201313629 (2005).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jin, C. Q. et al. Influence of nanoparticle size on ethanol gas sensing performance of mesoporous alpha-Fe(2)O3 hollow spheres. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater.<\/i> 224<\/b>, 158\u2013162 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rout, C. S., Hegde, M. & Rao, C. N. R. H2S sensors based on tungsten oxide nanostructures. Sens. Actuators B Chem.<\/i> 128<\/b>, 488\u2013493 (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wagner, T., Haffer, S., Weinberger, C., Klaus, D. & Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev.<\/i> 42<\/b>, 4036\u20134053 (2013). 2013.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jang, J. S., Choi, S. J., Kim, S. J., Hakim, M. & Kim, I. D. Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater.<\/i> 26<\/b>, 4740\u20134748 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, H. et al. Mesoporous WO3 nanofibers with crystalline framework for high-performance acetone sensing. Front. Chem.<\/i> 7<\/b>, 266 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yoon, J.-W. et al. Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater.<\/i> 8<\/b>, e244 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol.<\/i> 38<\/b>, 217 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kong, J. et al. Nanotube molecular wires as chemical sensors. Science<\/i> 287<\/b>, 622\u2013625 (2000).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Agarwal, P. B. et al. Flexible NO2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates. Flex. Print. Electron.<\/i> 3<\/b>, 035001 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, Z. et al. Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res.<\/i> 11<\/b>, 511\u2013519 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L. & Perkins, F. K. Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett.<\/i> 6<\/b>, 1747\u20131751 (2006).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao, J. J., Buldum, A., Han, J. & Lu, J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology<\/i> 13<\/b>, 195\u2013200 (2002). Pii s0957-4484(02)30254-x.<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, S. Y., Hou, P. X., Zhang, F., Liu, C. & Cheng, H. M. Gas Sensors Based on Single-Wall Carbon Nanotubes. Molecules<\/i> 27<\/b>, 5381 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science<\/i> 306<\/b>, 666\u2013669 (2004).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xia, K. L., Wang, C. Y., Jian, M. Q., Wang, Q. & Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res.<\/i> 11<\/b>, 1124\u20131134 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Qiu, X. Y., Bouchiat, V., Colombet, D. & Ayela, F. Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating \u2018lab-on-a-chip. Rsc Adv.<\/i> 9<\/b>, 3232\u20133238 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys.<\/i> 51<\/b>, 1\u2013186 (2002).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D Appl. Phys.<\/i> 43<\/b>, 374009 (2010).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim, K. S. et al. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics. Sci. Rep.<\/i> 7<\/b>, 2462 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Singh, S. U. et al. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Microchim. Acta<\/i> 189<\/b>, 236 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun.<\/i> 146<\/b>, 351\u2013355 (2008).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Singh, E., Meyyappan, M. & Nalwa, H. S. FlexiblE GRAPHENE-BASED WEARABLE GAS AND CHEMICAL SEnsors. ACS Appl. Mater. Interfaces<\/i> 9<\/b>, 34544\u201334586 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ma, J. et al. Gas sensor based on defective graphene\/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv.<\/i> 9<\/b>, 075207 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim, Y. H. et al. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano<\/i> 9<\/b>, 10453\u201310460 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano<\/i> 4<\/b>, 4806\u20134814 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sun, L. & Fugetsu, B. Mass production of graphene oxide from expanded graphite. Mater. Lett.<\/i> 109<\/b>, 207\u2013210 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, N., Chen, X. D., Chen, X. P., Ding, X. & Li, X. Y. Subsecond response of humidity sensor based on graphene oxide quantum dots. IEEE Electron Device Lett.<\/i> 36<\/b>, 615\u2013617 (2015).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ahmadvand, H., Zad, A. I., Mohammadpour, R., Hosseini-Shokouh, S. H. & Asadian, E. Room temperature and high response ethanol sensor based on two dimensional hybrid nanostructures of WS2\/GONRs. Sci. Rep.<\/i> 10<\/b>, 14799 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Duy, L. T. et al. Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Functional Mater.<\/i> 26<\/b>, 4329\u20134338 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, X. F., Jang, J. & Nagase, S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C<\/i> 114<\/b>, 832\u2013842 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, G. X. et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C<\/i> 112<\/b>, 8192\u20138195 (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pei, S. F. & Cheng, H. M. The reduction of graphene oxide. Carbon<\/i> 50<\/b>, 3210\u20133228 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, X. W. et al. Wearable NO2 sensing and wireless application based on ZnS nanoparticles\/nitrogen-doped reduced graphene oxide. Sens. Actuators B Chem.<\/i> 345<\/b>, 130423 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, L. et al. Highly sensitive NH3 wireless sensor based on Ag-RGO composite operated at room-temperature. Sci. Rep.<\/i> 9<\/b>, 9942 (2019).<\/p>\n<\/li>\n

  • \n

    Zhang, F. Z. et al. A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsyst. Nanoeng.<\/i> 8<\/b>, 40 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lin, J. et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun.<\/i> 5, https:\/\/doi.org\/10.1038\/ncomms6714<\/a>. (2014).<\/p>\n<\/li>\n

  • \n

    Parmeggiani, M. et al. PDMS\/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl. Mater. Interfaces<\/i> 11<\/b>, 33221\u201333230 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    You, R. et al. Laser fabrication of graphene-based flexible electronics. Adv. Mater.<\/i> 32<\/b>, 1901981 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dimiev, A. M. et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano<\/i> 7<\/b>, 2773\u20132780 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Biswas, R. K., Vijayaraghavan, R. K., McNally, P., O\u2019Connor, G. M. & Scully, P. Graphene growth kinetics for CO2 laser carbonization of polyimide. Mater. Lett.<\/i> 307<\/b>, 131097 (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, G. J., Mo, X. Y., Law, W. C. & Chan, K. C. Wearable fluid capture devices for electrochemical sensing of sweat. ACS Appl. Mater. Interfaces<\/i> 11<\/b>, 238\u2013243 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abdulhafez, M., Tomaraei, G. N. & Bedewy, M. Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater.<\/i> 4<\/b>, 2973\u20132986 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Muzyka, K. & Xu, G. Laser-induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis<\/i> 34<\/b>, 574\u2013589 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, L. et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng.<\/i> 8<\/b>, 78 (2022).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chyan, Y. et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano<\/i> 12<\/b>, 2176\u20132183 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater.<\/i> 23<\/b>, 4248\u20134253 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xin, M., Li, J. A., Ma, Z., Pan, L. J. & Shi, Y. MXenes and their applications in wearable sensors. Front. Chem.<\/i> 8<\/b>, 297 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater.<\/i> 26<\/b>, 992\u20131005 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pei, Y. Y. et al. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano<\/i> 15<\/b>, 3996\u20134017 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Reddy, M. S. B., Kailasa, S., Marupalli, B. C. G., Aich, S. & Sadasivuni, K. K. A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sensors<\/i> 7<\/b>, 2132\u20132163 (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, X. et al. Room temperature VOCs sensing with termination-modified Ti3C2Tx MXene for wearable exhaled breath monitoring. Adv. Mater. Technol.<\/i> 7<\/b>, 2100872 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xing, H. et al. MXene\/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem.<\/i> 361<\/b>, 131704 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ma, Z. et al. Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Lett.<\/i> 18<\/b>, 4570\u20134575 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, C. H. et al. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B Chem.<\/i> 261<\/b>, 587\u2013597 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, S. et al. Flexible ammonia sensor based on PEDOT:PSS\/silver nanowire composite film for meat freshness monitoring. IEEE Electron Device Lett.<\/i> 38<\/b>, 975\u2013978 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khan, I. & Saeed, K. Nanoparticles: properties, applications and toxicities. Arabian J. Chem.<\/i> 12<\/b>, 908\u2013931 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Koga, K. Electronic and catalytic effects of single-atom pd additives on the hydrogen sensing properties of Co3O4 nanoparticle films. ACS Appl. Mater. Interfaces<\/i> 12<\/b>, 20806\u201320823 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rai, P., Kim, Y. S., Song, H. M., Song, M. K. & Yu, Y. T. The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem.<\/i> 165<\/b>, 133\u2013142 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Marikutsa, A., Novikova, A., Rumyantseva, M., Khmelevsky, N. & Gaskov, A. Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC. Sens. Actuators B Chem.<\/i> 326<\/b>, 128980 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    D\u2019Arienzo, M. et al. One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem. Mater.<\/i> 22<\/b>, 4083\u20134089 (2010).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kolmakov, A., Klenov, D. O., Lilach, Y., Stemmer, S. & Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett.<\/i> 5<\/b>, 667\u2013673 (2005).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim, W., Jang, B., Lee, H.-S. & Lee, W. Reliability and selectivity of H-2 sensors composed of Pd Film nanogaps on an elastomeric substrate. Sens. Actuators B Chem.<\/i> 224<\/b>, 547\u2013551 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, M. & Feng, Y. Palladium-silver thin film for hydrogen sensing. Sens. Actuators B Chem.<\/i> 123<\/b>, 101\u2013106 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wolfe, D. B., Love, J. C., Paul, K. E., Chabinyc, M. L. & Whitesides, G. M. Fabrication of palladium-based microelectronic devices by microcontact printing. Appl. Phys. Lett.<\/i> 80<\/b>, 2222\u20132224 (2002).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    McConnell, C. et al. Hydrogen sensors based on flexible carbon nanotube-palladium composite sheets integrated with ripstop fabric. ACS Omega<\/i> 5<\/b>, 487\u2013497 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, X. W., Wang, J. & Long, Y. C. Zeolite-based materials for gas sensors. Sensors<\/i> 6<\/b>, 1751\u20131764 (2006).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Della Gaspera, E. et al. Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties. J. Mater. Chem.<\/i> 21<\/b>, 4293\u20134300, (2011). 2011.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shin, J. et al. Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater.<\/i> 23<\/b>, 2357\u20132367 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shao, F. et al. Heterostructured p-CuO (nanoparticle)\/n-SnO2 (nanowire) devices for selective H2S detection. Sens. Actuators B Chem.<\/i> 181<\/b>, 130\u2013135 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Miller, D. R., Akbar, S. A. & Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens.s Actuators B Chem.<\/i> 204<\/b>, 250\u2013272 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, Z., Tian, Z., Han, D. & Gu, F. Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO. ACS Appl. Mater. Interfaces<\/i> 8<\/b>, 5466\u20135474 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yan, S., Xue, J. Z. & Wu, Q. S. Synchronous synthesis and sensing performance of alpha-Fe2O3\/SnO2 nanofiber heterostructures for conductometric C2H5OH detection. Sens. Actuators B Chem.<\/i> 275<\/b>, 322\u2013331 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, Y., Zhang, H. & Sun, X. H. Electrospun nanowebs of NiO\/SnO2 p-n heterojunctions for enhanced gas sensing. Appl. Surface Sci.<\/i> 389<\/b>, 514\u2013520 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhu, C. H. et al. One step synthesis of PANI\/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology<\/i> 30<\/b>, 255502 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, L.-T., Zhou, Y. & Han, S.-T. The role of metal-organic frameworks in electronic sensors. Angew. Chem. Int. Ed.<\/i> 60<\/b>, 15192\u201315212 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Stassin, T. et al. Vapour-phase deposition of oriented copper dicarboxylate metal-organic framework thin films. Chem. Commun.<\/i> 55<\/b>, 10056\u201310059 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Falcaro, P. et al. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater.<\/i> 16<\/b>, 342 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alizadeh, S. & Nematollahi, D. Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal-organic framework thin films: composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores. J. Am. Chem. Soc.<\/i> 139<\/b>, 4753\u20134761 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ikigaki, K. et al. MOF-on-MOF: oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem. Int. Ed.<\/i> 58<\/b>, 6886\u20136890 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rubio-Gimenez, V. et al. High-quality metal-organic framework ultrathin films for electronically active interfaces. J. Am. Chem. Soc.<\/i> 138<\/b>, 2576\u20132584 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rui, K. et al. Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage. ACS Appl. Mater. Interfaces<\/i> 10<\/b>, 2837\u20132842 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.<\/i> 7<\/b>, 699\u2013712 (2012).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou, T. T. & Zhang, T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for gas sensors. Small Methods<\/i> 5<\/b>, 2100515 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, L. et al. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A<\/i> 8<\/b>, 6487\u20136500 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tan, C. L. et al. Preparation of single-layer MoS2xSe2(1-x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase. Small<\/i> 12<\/b>, 1866\u20131874 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sun, Y. F. et al. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc.<\/i> 139<\/b>, 11096\u201311105 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Duan, X. et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett.<\/i> 16<\/b>, 264\u2013269 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ko, K. Y. et al. High-performance gas sensor using a large-area WS2xSe2-2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces<\/i> 10<\/b>, 34163\u201334171 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nassar, J. M. et al. Paper skin multisensory platform for simultaneous environmental monitoring. Adv. Mater. Technol.<\/i> 1<\/b>, 1600004 (2016).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guder, F. et al. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed.<\/i> 55<\/b>, 5727\u20135732 (2016).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Barandun, G. et al. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens.<\/i> 4<\/b>, 1662\u20131669 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, J. et al. Pencil-trace on printed silver interdigitated electrodes for paper-based NO2 gas sensors. Appl. Phys. Lett.<\/i> 106<\/b>, 143101 (2015).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rufo, J. C., Madureira, J., Fernandes, E. O. & Moreira, A. Volatile organic compounds in asthma diagnosis: a systematic review and meta-analysis. Allergy<\/i> 71<\/b>, 175\u2013188 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bos, L. D., Sterk, P. J. & Fowler, S. J. Breathomics in the setting of asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol.<\/i> 138<\/b>, 970\u2013976 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    van Oort, P. M. et al. The potential role of exhaled breath analysis in the diagnostic process of pneumonia-a systematic review. J. Breath Res.<\/i> 12<\/b>, 024001 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ruzsanyi, V. et al. Diagnosing lactose malabsorption in children: difficulties in interpreting hydrogen breath test results. J. Breath Res.<\/i> 10<\/b>, 016015 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jalal, A. H. et al. Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens.<\/i> 3<\/b>, 1246\u20131263 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mehaney, A., Alrowaili, Z. A., Elsayed, H. A., Taha, T. A. & Ahmed, A. M. Theoretical investigations of Tamm plasmon resonance for monitoring of isoprene traces in the exhaled breath: Towards chronic liver fibrosis disease biomarkers. Phys. Lett. A<\/i> 413<\/b>, 127610 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Smith, D., Spanel, P., Fryer, A. A., Hanna, F. & Ferns, G. A. A. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J. Breath Res.<\/i> 5<\/b>, 022001 (2011).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Buszewski, B., Kesy, M., Ligor, T. & Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr.<\/i> 21<\/b>, 553\u2013566 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Crofford, O. B. et al. Acetone in breath and blood. Trans. Am. Clin. Climatolog. Assoc.<\/i> 88<\/b>, 128\u2013139 (1977).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Henderson, M. J., Karger, B. A. & Wren Shall, G. A. Acetone in the breath; a study of acetone exhalation in diabetic and nondiabetic human subjects. Diabetes<\/i> 1<\/b>, 188 (1952).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sulway, M. J. & Malins, J. M. Acetone in diabetic ketoacidosis. Lancet<\/i> 2<\/b>, 736\u2013740 (1970).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ruzsanyi, V. & Kalapos, M. P. Breath acetone as a potential marker in clinical practice. J. Breath Res.<\/i> 11<\/b>, 024002 (2017).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Koeslag, J. H. Post-exercise ketosis and the hormone response to exercise: a review. Med. Sci. Sports Exerc.<\/i> 14<\/b>, 327\u2013334 (1982). 1982. [Online]. Available: <Go to ISI>:\/\/MEDLINE:6759842.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Musa-Veloso, K. et al. Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition<\/i> 22<\/b>, 1\u20138 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cope, K., Risby, T. & Diehl, A. M. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology<\/i> 119<\/b>, 1340\u20131347 (2000).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Umasankar, Y. et al., \u201cWearable alcohol monitoring device with auto-calibration ability for high chemical specificity,\u201d in 13th IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN)<\/i>, San Francisco, CA, 2016 Jun 14-17 2016, in International Conference on Wearable and Implantable Body Sensor Networks, 353\u2013358. (IEEE Xplore, 2016)<\/p>\n<\/li>\n

  • \n

    Polissar, N. L., Suwanvijit, W. & Gullberg, R. G. The accuracy of handheld pre-arrest breath test instruments as a predictor of the evidential breath alcohol test results. J. Forensic Sci.<\/i> 60<\/b>, 482\u2013487 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cailleux, A. & Allain, P. Isoprene and sleep. Life sciences<\/i> 44<\/b>, 1877\u201380, (1989). 1989.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mochalski, P., King, J., Mayhew, C. A. & Unterkofler, K. A review on isoprene in human breath. J. Breath Res.<\/i> 17<\/b>, 037101 (2023).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Levitt, M. D., Furne, J. K., Kuskowski, M. & Ruddy, J. Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements. Clin. Gastroenterol. Hepatol.<\/i> 4<\/b>, 123\u2013129 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Das, S. & Pal, M. Review-non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc.<\/i> 167<\/b>, 037562 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Haines, A. P., Imeson, J. D. & Wiggins, H. S. Relation of breath methane with obesity and other factors. Int. J. Obes.<\/i> 8<\/b>, 675\u2013680 (1984).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wilder-Smith, C. H., Olesen, S. S., Materna, A. & Drewes, A. M. Breath methane concentrations and markers of obesity in patients with functional gastrointestinal disorders. United Eur. Gastroenterol. J.<\/i> 6<\/b>, 595\u2013603 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Riely, C. A., Cohen, G. & Lieberman, M. Ethane evolution: a new index of lipid peroxidation. Science (New York, N.Y.)<\/i> 183<\/b>, 208\u201310 (1974). 1974.<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Allerheiligen, S. R., Ludden, T. M. & Burk, R. F. The pharmacokinetics of pentane, a by-product of lipid peroxidation. Drug Metab. Dispos. Biolog. Fate Chem.<\/i> 15<\/b>, 794\u2013800 (1987).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ivanova, S. M., Orlov, O. N., Brantova, S. S., Labetskaia, O. I. & Davydova, N. A. Effect of intensive operator activity on lipid peroxidation processes in the human body. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina<\/i> 20<\/b>, 20\u201322 (1986).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Leaf, D. A., Kleinman, M. T., Hamilton, M. & Barstow, T. J. The effect of exercise intensity on lipid peroxidation. Med. Sci. Sports Exerc.<\/i> 29<\/b>, 1036\u20139 (1997). 1997.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Torok, Z. M. et al. Breath biomarkers as disease indicators: sensing techniques approach for detecting breath gas and COVID-19. Chemosensors<\/i> 10<\/b>, 167 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, H. et al. COVID-19 screening using breath-borne volatile organic compounds. J. Breath Res.<\/i> 15<\/b>, 4 (2021). 047104.<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shan, B. et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. Acs Nano<\/i> 14<\/b>, 12125\u201312132 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Burton, B. K. Urea cycle disorders. Clin. Liver Dis.<\/i> 4<\/b>, 815\u201330, (2000). vi2000.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mew, N. A., Yudkoff, M. & Tuchman, M. Stable isotopes in the diagnosis and treatment of inherited hyperammonemia. J. Pediatr. Biochem.<\/i> 4<\/b>, 57\u201363 (2014).<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Walker, V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obesity Metab.<\/i> 11<\/b>, 823\u2013835 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Davies, S., Spanel, P. & Smith, D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int.<\/i> 52<\/b>, 223\u20138 (1997).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Agarwal, A., Rai, S. K., Lin, Y. C., Patnaik, R. K. & Yeh, J. A. Ammonia selectivity over acetone by viscosity modulation of silicone oil filter for diagnosing liver dysfunction. Ecs J. Solid State Sci. Technol.<\/i> 9<\/b>, 115030 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    He, Y. et al. Partial pressure of NH3 in cirrhotic patients with and without hepatic encephalopathy. J. Gastrointest. Liver Dis.<\/i> 20<\/b>, 169\u2013174 (2011).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pham, Y. L. & Beauchamp, J. Breath biomarkers in diagnostic applications. Molecules<\/i> 26<\/b>, 5514 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Palmer, R. M. The L-arginine: nitric oxide pathway. Curr. Opin. Nephrol. Hypertens.<\/i> 2<\/b>, 122\u20138, (1993).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Saleh, D., Ernst, P., Lim, S., Barnes, P. J. & Giaid, A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J.<\/i> 12<\/b>, 929\u201337 (1998).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ashutosh, K. Nitric oxide and asthma: a review. Curr. Opin. Pulm. Med.<\/i> 6<\/b>, 21\u20135 (2000).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cao, W. Q. & Duan, Y. X. Breath analysis: Potential for clinical diagnosis and exposure assessment. Clin. Chem.<\/i> 52<\/b>, 800\u2013811 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kharitonov, S. A., Yates, D. & Barnes, P. J. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Euro. Respir. J.<\/i> 8<\/b>, 295\u20137 (1995).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Barnes, P. J. & Kharitonov, S. A. Exhaled nitric oxide: a new lung function test. Thorax<\/i> 51<\/b>, 233\u20137 (1996).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dotsch, J. et al. Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Euro. Respir. J.<\/i> 9<\/b>, 2537\u201340 (1996).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Olas, B. Hydrogen sulfide in signaling pathways. Clin. Chim. Acta<\/i> 439<\/b>, 212\u2013218 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tangerman, A. & Winkel, E. G. Intra- and extra-oral halitosis: finding of a new form of extra-oral blood-borne halitosis caused by dimethyl sulphide. J. Clin. Periodontol.<\/i> 34<\/b>, 748\u2013755 (2007).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Morselli-Labate, A. M., Fantini, L. & Pezzilli, R. Hydrogen sulfide, nitric oxide and a molecular mass 66 u substance in the exhaled breath of chronic pancreatitis patients. Pancreatology<\/i> 7<\/b>, 497\u2013504 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Robles, L. & Priefer, R. Lactose intolerance: what your breath can tell you. Diagnostics<\/i> 10<\/b>, 412 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bauer, T. M. et al. Diagnosis of small intestinal bacterial overgrowth in patients with cirrhosis of the liver: poor performance of the glucose breath hydrogen test. J. Hepatol.<\/i> 33<\/b>, 382\u2013386 (2000).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shin, W. Medical applications of breath hydrogen measurements. Anal. Bioanal. Chem.<\/i> 406<\/b>, 3931\u20133939 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Evans, D., Hodgkinson, B. & Berry, J. Vital signs in hospital patients: a systematic review. Int. J. Nursing Stud.<\/i> 38<\/b>, 643\u2013650 (2001).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tai, H. L., Wang, S., Duan, Z. H. & Jiang, Y. D. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens. Actuators B Chem.<\/i> 318<\/b>, 128104 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater.<\/i> 28<\/b>, 4373\u20134395 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, L., Berglin, L., Wiklund, U. & Mattila, H. Design of a garment-based sensing system for breathing monitoring. Textile Res. J.<\/i> 83<\/b>, 499\u2013509 (2013).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and multiorgan response. Curr. Problems Cardiol.<\/i> 45<\/b>, 100618 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ryvlin, P. et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol.<\/i> 12<\/b>, 966\u2013977 (2013).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Greer, D. M. Mechanisms of injury in hypoxic-ischemic encephalopathy: Implications to therapy. Semin. Neurol.<\/i> 26<\/b>, 373\u2013379 (2006).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alviar, C. L. et al. Positive pressure ventilation in the cardiac intensive care unit. J. Am. Coll. Cardiol.<\/i> 72<\/b>, 1532\u20131553 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mojoli, F., Bouhemad, B., Mongodi, S. & Lichtenstein, D. Lung ultrasound for critically Ill patients. Am. J. Respir. Crit. Care Med.<\/i> 199<\/b>, 701\u2013714 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Effros, R. M. et al. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med.<\/i> 165<\/b>, 663\u2013669 (2002).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Miekisch, W., Schubert, J. K. & Noeldge-Schomburg, G. F. E. Diagnostic potential of breath analysis – focus on volatile organic compounds. Clin. Chim. Acta<\/i> 347<\/b>, 25\u201339 (2004).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zacharasiewicz, A. et al. Repeatability of sodium and chloride in exhaled breath condensates. Pediatric Pulmonol.<\/i> 37<\/b>, 273\u2013275 (2004).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Baraldi, E. et al. Safety and success of exhaled breath condensate collection in asthma. Archives Dis. Childhood<\/i> 88<\/b>, 358\u2013360 (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gholizadeh, A. et al. Toward point-of-care management of chronic respiratory conditions: electrochemical sensing of nitrite content in exhaled breath condensate using reduced graphene oxide. Microsyst. Nanoeng.<\/i> 3<\/b>, 17022 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wewel, A. R. et al. Time course of exhaled hydrogen peroxide and nitric oxide during chemotherapy. Eur. Respir. J.<\/i> 27<\/b>, 1033\u20131039 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Horvath, I. et al., Exhaled breath condensate: methodological recommendations and unresolved questions. Euro. Respir. J.<\/i> 26<\/b>, 523\u2013548, (2005).<\/p>\n<\/li>\n

  • \n

    Jobsis, Q., Raatgeep, H. C., Hermans, P. W. & de Jongste, J. C. Hydrogen peroxide in exhaled air is increased in stable asthmatic children. Euro. Respir. J.<\/i> 10<\/b>, 519\u2013521 (1997).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nowak, D. et al. Increased content of hydrogen peroxide in the expired breath of cigarette smokers. Euro. Respir. J.<\/i> 9<\/b>, 652\u20137 (1996). 1996.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    De Benedetto, F. et al. Validation of a new technique to assess exhaled hydrogen peroxide: results from normals and COPD patients. Monaldi Archives Chest Disease = Archivio Monaldi Malattie Del Torace<\/i> 55<\/b>, 185\u2013188 (2000).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Heard, S. O. et al. The influence of liposome-encapsulated prostaglandin E-1 on hydrogen peroxide concentrations in the exhaled breath of patients with the acute respiratory distress syndrome. Anesth. Analg.<\/i> 89<\/b>, 353\u2013357 (1999).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, Y. C. & O\u2019Hare, D. Exhaled breath condensate based breath analyser – a disposable hydrogen peroxide sensor and smart analyser. Analyst<\/i> 145<\/b>, 3549\u20133556 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Davis, M. D., Montpetit, A. & Hunt, J. Exhaled breath condensate an overview. Immunol. Allergy Clin. N. Am.<\/i> 32<\/b>, 363 (2012).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Davis, M. D. & Montpetit, A. J. Exhaled breath condensate an update. Immunol. Allergy Clin. N. Am.<\/i> 38<\/b>, 667 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sawano, M., Takeshita, K., Ohno, H. & Oka, H. RT-PCR diagnosis of COVID-19 from exhaled breath condensate: a clinical study. J. Breath Res.<\/i> 15<\/b>, 037103 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cepelak, I. & Dodig, S. Exhaled breath condensate: a new method for lung disease diagnosis. Clin. Chem. Lab. Med.<\/i> 45<\/b>, 945\u2013952 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Scheideler, L., Manke, H. G., Schwulera, U., Inacker, O. & Hammerle, H. Detection of nonvolatile macromolecules in breath. A possible diagnostic tool? Am. Rev. Respir. Dis.<\/i> 148<\/b>, 778\u201384 (1993). 1993.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Konvalina, G. & Haick, H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res.<\/i> 47<\/b>, 66\u201376 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shirasu, M. & Touhara, K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J. Biochem.<\/i> 150<\/b>, 257\u2013266 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Costello, B. D. et al. A review of the volatiles from the healthy human body. J. Breath Res.<\/i> 8<\/b>, 014001 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fowler, S. J. Breath analysis for label-free characterisation of airways disease. Eur. Respir. J.<\/i> 51<\/b>, 1702586 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guntner, A. T. et al. Guiding ketogenic diet with breath acetone sensors. Sensors<\/i> 18<\/b>, 3655 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Davis, D. et al. Flexible paper-based room-temperature acetone sensors with ultrafast regeneration. ACS Appl. Mater. Interfaces<\/i> 15<\/b>, 25734\u201325743 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chuang, M. Y. et al. Room-temperature-operated organic-based acetone gas sensor for breath analysis. Sens. Actuators B Chem.<\/i> 260<\/b>, 593\u2013600 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, L. L., Jackman, J. A., Park, J. H., Tan, E. L. & Cho, N. J. A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. J. Mater. Chem. B<\/i> 5<\/b>, 4019\u20134024 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Weber, I. C., Braun, H. P., Krumeich, F., Guntner, A. T. & Pratsinis, S. E. Superior acetone selectivity in gas mixtures by catalyst-filtered chemoresistive sensors. Adv. Sci.<\/i> 7<\/b>, 2001503 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Raghu, A. V., Karuppanan, K. K., Nampoothiri, J. & Pullithadathil, B. Wearable, flexible ethanol gas sensor based on TiO2 nanoparticles-grafted 2D-titanium carbide nanosheets. ACS Appl. Nano Mater.<\/i> 2<\/b>, 1152\u20131163 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maity, D., Rajavel, K. & Kumar, R. T. R. Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sens. Actuators B Chemical<\/i> 261<\/b>, 297\u2013306 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wei, H. L., Kumar, P. & Yao, D. J. Printed resistive sensor array combined with a flexible substrate for ethanol and methane detection. ECS J. Solid State Sci. Technol.<\/i> 9<\/b>, 115008 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim, S. Y. et al. Alcohol gas sensors capable of wireless detection using In2O3\/Pt nanoparticles and Ag nanowires. Sens. Actuators B Chem.<\/i> 259<\/b>, 825\u2013832 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, K., Wei, W., Lou, Z., Zhang, H. & Wang, L. L. 1D\/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity. Appl. Surface Sci.<\/i> 479<\/b>, 209\u2013215 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    van den Broek, J., Guntner, A. T. & Pratsinis, S. E. Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sensors<\/i> 3<\/b>, 677 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, Q. F., Liu, D., Lin, L. M. & Wu, J. M. Bridging interdigitated electrodes by electrochemical-assisted deposition of graphene oxide for constructing flexible gas sensor. Sens. Actuators B Chem.<\/i> 286<\/b>, 591\u2013599 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zheng, Q., Lee, J. H., Kim, S. J., Lee, H. S. & Lee, W. Excellent isoprene-sensing performance of In2O3 nanoparticles for breath analyzer applications. Sens.s Actuators B Chem.<\/i> 327<\/b>, 128892 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Saito, N., Haneda, H., Watanabe, K., Shimanoe, K. & Sakaguchi, I. Highly sensitive isoprene gas sensor using Au-loaded pyramid-shaped ZnO particles. Sens. Actuators B Chem.<\/i> 326<\/b>, 128999 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Han, B. Q. et al. Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis. Sens. Actuators B Chem.<\/i> 309<\/b>, 127788 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, M. et al. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology<\/i> 29<\/b>, 455501 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xue, D. P., Wang, P. T., Zhang, Z. Y. & Wang, Y. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sens. Actuators B Chem.<\/i> 296<\/b>, 126710 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Niu, F. et al. Synthesizing metal oxide semiconductors on doped Si\/SiO2 flexible fiber substrates for wearable gas sensing. Research<\/i> 6<\/b>, 0100 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, D. Z., Mi, Q., Wang, D. Y. & Li, T. T. MXene\/Co3O4 composite based formaldehyde sensor driven by ZnO\/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuators B Chem.<\/i> 339<\/b>, 129923 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, Y. X. et al. Rational design and in situ growth of SnO2\/CMF composites: insightful understanding of the formaldehyde gas sensing mechanism and enhanced gas sensing properties. J. Mater. Chem. C<\/i> 8<\/b>, 12418\u201312426 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mani, G. K. & Rayappan, J. B. B. ZnO nanoarchitectures: Ultrahigh sensitive room temperature acetaldehyde sensor. Sens. Actuators B Chem.<\/i> 223<\/b>, 343\u2013351 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nakate, U. T., Yu, Y. T. & Park, S. High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sens. Actuators B Chem.<\/i> 344<\/b>, 130264 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, Z. X. et al. Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small<\/i> 17<\/b>, 2104997 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tang, N. et al. A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens.<\/i> 4<\/b>, 726\u2013732 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guntner, A. T., Wied, M., Pineau, N. J. & Pratsinis, S. E. Rapid and selective NH3 sensing by porous CuBr. Adv. Sci.<\/i> 7<\/b>, 1903390 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, C. et al. Laser processing of crumpled porous graphene\/mxene nanocomposites for a standalone gas sensing system. Nano Lett.<\/i> 23<\/b>, 3435\u20133443 (2023).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, T. et al. Wearable smart yarn sensor based on ZnO\/SnO2 heterojunction for ammonia detecting. J. Mater. Sci.<\/i> 57<\/b>, 21946\u201321959 (2022).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alharthy, R. D. & Saleh, A. A novel trace-level ammonia gas sensing based on flexible PAni-CoFe2O4 nanocomposite film at room temperature. Polymers<\/i> 13<\/b>, 3077 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alshabouna, F. et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater. Today<\/i> 59<\/b>, 56\u201367 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, S. et al. An integrated flexible self-powered wearable respiration sensor. Nano Energy<\/i> 63<\/b>, 103829 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tong, X., Zhang, X. J., Li, J. & Wang, H. Flexible NH3 gas sensor based on TiO2\/cellulose nanocrystals composite film at room temperature. J. Mater. Sci. Mater. Electron.<\/i> 32<\/b>, 23566\u201323577 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Serafini, M. et al. A wearable electrochemical gas sensor for ammonia detection. Sensors<\/i> 21<\/b>, 7905 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, S. H. et al. Room-temperature, highly durable Ti3C2Tx MXene\/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces<\/i> 12<\/b>, 10434\u201310442 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, H. Y., Lee, C. S., Kim, D. H. & Lee, J. H. Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces<\/i> 10<\/b>, 27858\u201327867 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou, Y. L., Wang, J. & Li, X. K. Flexible room-temperature gas sensor based on poly (para-phenylene terephthalamide) fibers substrate coupled with composite NiO@CuO sensing materials for ammonia detection. Ceramics Int.<\/i> 46<\/b>, 13827\u201313834 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, L. Y. et al. Wearable and flexible bacterial cellulose\/polyaniline ammonia sensor based on a synergistic doping strategy. Sens. Actuators B Chem.<\/i> 334<\/b>, 129647 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nie, Q. X. et al. Facile fabrication of flexible SiO2\/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surfaces a Physicochem. Eng. Aspects<\/i> 537<\/b>, 532\u2013539 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, J. et al. Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces<\/i> 12<\/b>, 52070\u201352081 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bag, A. et al. A room-temperature operable and stretchable NO2 gas sensor composed of reduced graphene oxide anchored with MOF-derived ZnFe2O4 hollow octahedron. Sens. Actuators B Chem.<\/i> 346<\/b>, 130463 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kang, J. Y. et al. 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. Sens. Actuators B-Chem.<\/i> 331<\/b>, 129371 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Duy, L. T. & Seo, H. Eco-friendly, self-healing, and stretchable graphene hydrogels functionalized with diol oligomer for wearable sensing applications. Sens. Actuators B Chem.<\/i> 321<\/b>, 128507 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Moon, D. B. et al. A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods. Sens. Actuators B Chem.<\/i> 345<\/b>, 130373 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khalifa, M. & Anandhan, S. Highly sensitive and wearable NO2 gas sensor based on PVDF nanofabric containing embedded polyaniline\/g-C3N4 nanosheet composites. Nanotechnology<\/i> 32<\/b>, 485504 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Park, J., Ryu, C., Jang, I., Jung, S. I. & Kim, H. J. A study of strain effect on stretchable carbon nanotube gas sensors. Mater. Today Commun.<\/i> 33<\/b>, 105007 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cho, S. Y. et al. Continuous meter-scale synthesis of weavable tunicate cellulose\/carbon nanotube fibers for high-performance wearable sensors. ACS Nano<\/i> 13<\/b>, 9332\u20139341 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Song, Y. Y. et al. MXene-Derived TiO2 nanoparticles intercalating between RGO nanosheets: an assembly for highly sensitive gas detection. ACS Appl. Mater. Interfaces<\/i> 13<\/b>, 39772\u201339780 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yan, W. H. et al. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater.<\/i> 3<\/b>, 2545\u20132553 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hou, C., Tai, G., Liu, Y. & Liu, X. Borophene gas sensor. Nano Res.<\/i> 15<\/b>, 2537\u20132544 (2022).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chang, S. L. et al. Intrinsically flexible CNT-TiO2-Interlaced film for NO sensing at room temperature. Appl. Surface Sci.<\/i> 579<\/b>, 152172 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, Z. X. et al. A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater.<\/i> 33<\/b>, https:\/\/doi.org\/10.1002\/adfm.202300046<\/a> (2023).<\/p>\n<\/li>\n

  • \n

    Mahajan, A. & Gasso, S. Self-powered wearable gas sensors based on L-Ascorbate-Treated MXene nanosheets and SnO2 nanofibers. ACS Appl. Nano Mater.<\/i> 6<\/b>, 6678\u20136692 (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, X. W. et al. Highly flexible all-inorganic nanofiber networks with stress-accommodating microstructure for light-activated wearable chemiresistive sensor. Chem. Eng. J.<\/i> 455<\/b>, 140768 (2023).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, Z. D. et al. Engineering CuMOF in TiO2 nanochannels as flexible gas sensor for high-performance NO detection at room temperature. ACS Sens.<\/i> 7<\/b>, 2750\u20132758 (2022).<\/p>\n<\/li>\n

  • \n

    Huang, Y. F. et al. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research<\/i> 2021<\/b>, 9847285 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, L. J. et al. Facile synthesis of conductive metal-organic frameworks nanotubes for ultrahigh-performance flexible NO sensors. Small Methods<\/i> 6<\/b>, 2200581 (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zang, W. et al. Core-Shell In2O3\/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C<\/i> 118<\/b>, 9209\u20139216 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Asad, M. & Sheikhi, M. H. Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuators B Chem.<\/i> 231<\/b>, 474\u2013483 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim, S. G., Tran, T. V. & Lee, J. S. Iron oxide-immobilized porous carbon nanofiber-based radio frequency identification (RFID) tag sensor for detecting hydrogen sulfide. J. Ind. Eng. Chem.<\/i> 112<\/b>, 423\u2013429 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, J. et al. Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater.<\/i> 34<\/b>, 2104958 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, X. L. et al. Flexible H2S sensors: Fabricated by growing NO2-UiO-66 on electrospun nanofibers for detecting ultralow concentration H2S. Appl. Surface Sci.<\/i> 573<\/b>, 151446 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhu, Z. Y. et al. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber. J. Hazardous Mater.<\/i> 411<\/b>, 125008 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cho, M., Yun, J., Kwon, D., Kim, K. & Park, I. High-sensitivity and low-power flexible schottky hydrogen sensor based on silicon nanomembrane. ACS Appl. Mater. Interfaces<\/i> 10<\/b>, 12870\u201312877 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim, D. H. et al. High-resolution, fast, and shape-conformable hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt. ACS Nano<\/i> 13<\/b>, 6071\u20136082 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nair, K. G., Vishnuraj, R. & Pullithadathil, B. Highly sensitive, flexible H-2 gas sensors based on less platinum bimetallic Ni-Pt nanocatalyst-functionalized carbon nanofibers. ACS Appl. Electron. Mater.<\/i> 3<\/b>, 1621\u20131633 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xie, B. et al. Pd nanoparticle film on a polymer substrate for transparent and flexible hydrogen sensors. ACS Appl. Mater. Interfaces<\/i> 10<\/b>, 44603\u201344613 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, Z. K. et al. Lead-free halide Cs2PtI6 perovskite favoring Pt-N bonding for trace NO detection. ACS Sens.<\/i> 6<\/b>, 3800\u20133807 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Punetha, D., Kar, M. & Pandey, S. K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep.<\/i> 10<\/b>, 2151 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, X. W. et al. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces<\/i> 11<\/b>, 24533\u201324543 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hu, L. H. et al. A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system. Nanotechnology<\/i> 34<\/b>, 195501 (2023).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, J. J., Wang, N., Xu, D., Tang, L. & Sheng, B. Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly (ether-ether-ketone). Sens. Actuators B Chem.<\/i> 375<\/b>, 132846 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yan, D., Qiu, L. L., Shea, K. J., Meng, Z. H. & Xue, M. Dyeing and functionalization of wearable silk fibroin\/cellulose composite by nanocolloidal array. ACS Appl. Mater. Interfaces<\/i> 11<\/b>, 39163\u201339170 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hou, C. et al. Ultrasensitive humidity sensing and the multifunctional applications of borophene-MoS2 heterostructures. J. Mater. Chem. A<\/i> 9<\/b>, 13100\u201313108 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Park, S. Y. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO\/MoS2 van der Waals composites. J. Mater. Chem. A<\/i> 6<\/b>, 5016\u20135024 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hou, C., Tai, G. A., Liu, B., Wu, Z. H. & Yin, Y. H. Borophene-graphene heterostructure: preparation and ultrasensitive humidity sensing. Nano Res.<\/i> 14<\/b>, 2337\u20132344 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Noh, W., Go, Y. & An, H. Y. S. Reduced graphene oxide\/polyelectrolyte multilayers for fast resistive humidity sensing. Sensors<\/i> 23<\/b>, 1977 (2023).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Khattak, Z. J., Sajid, M., Javed, M., Rizvi, H. M. Z. & Awan, F. S. Mass-producible 2D nanocomposite-based temperature-independent all-printed relative humidity sensor. ACS Omega<\/i> 7<\/b>, 16605\u201316615 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yao, D. J. et al. Gas-permeable and highly sensitive, washable and wearable strain sensors based on graphene\/carbon nanotubes hybrids e-textile. Composites Part a Appl. Sci. Manuf.<\/i> 149<\/b>, 106556 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, Q., Pang, W. W., Xie, X., Xu, Y. L. & Yuan, W. J. Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. J. Mater. Chem. A<\/i> 10<\/b>, 15634\u201315646 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, W. C. et al. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring. ACS Appl. Mater. Interfaces<\/i> 14<\/b>, 1874\u20131884 (2022).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, T. C., et al., Ultralight, elastic, hybrid aerogel for flexible\/wearable piezoresistive sensor and solid-solid\/gas-solid coupled triboelectric nanogenerator. Adv. Sci.<\/i> 9<\/b>, (2022).<\/p>\n<\/li>\n

  • \n

    Sun, S., Hao, F. Y. & Maimaitiyiming, X. 3D print polyaniline\/gelatin hydrogels as wearable multifunctional sensors. Chemistryselect<\/i>. 7<\/b> (2022).<\/p>\n<\/li>\n

  • \n

    Hu, J. S. et al. Nano carbon black-based high performance wearable pressure sensors. Nanomaterials<\/i> 10<\/b>, 664 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jiang, S. W., Yu, J. T., Xiao, Y., Zhu, Y. Y. & Zhang, W. L. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface. ACS Appl. Mater. Interfaces<\/i> 11<\/b>, 20500\u201320508 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, T. et al. Hierarchically structured PVDF\/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy<\/i> 72<\/b>, 104706 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jiang, D. et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano<\/i> 15<\/b>, 5000\u20135010 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chao, M. Y. et al. Breathable Ti3C2Tx MXene\/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano<\/i> 15<\/b>, 9746\u20139758 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou, Q. et al. Lithography-free formation of controllable microdomes via droplet templates for robust, ultrasensitive, and flexible pressure sensors. ACS Appl. Nano Mater.<\/i> 2<\/b>, 7178\u20137187 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, H. et al. Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring. Carbon<\/i> 189<\/b>, 430\u2013442 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ren, H. Y. et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano<\/i> 13<\/b>, 5541\u20135548 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mondal, S., Min, B. K., Yi, Y., Nguyen, V. T. & Choi, C. G. Gamma-ray tolerant flexible pressure-temperature sensor for nuclear radiation environment. Adv. Mater. Technol.<\/i> 6<\/b>, 2001039 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, J. R. et al. Direct laser patterning of free-standing rgo electrodes for wearable capacitive pressure sensors. IEEE Photon. Technol. Lett.<\/i> 34<\/b>, 1361\u20131364 (2022).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Eatemadi, A. et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett.<\/i> 9<\/b>, 393 (2014).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kayser, L. V. & Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater.<\/i> 31<\/b>, 1806133 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Naguib, M., Barsoum, M. W. & Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater.<\/i> 33<\/b>, 2103393 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vaughan, J. et al. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur. Respir. J.<\/i> 22<\/b>, 889\u2013894 (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mitsubayashi, K. et al. Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sens. Actuators B Chem.<\/i> 95<\/b>, 373\u2013377 (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tentzeris, M. M., Nikolaou, S. & IEEE. RFID-enabled ultrasensitive wireless sensors utilizing inkjet-printed antennas and carbon nanotubes for gas detection applications. In Proc IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (Comcas 2009)<\/i>, (IEEE Xplore, 2009).<\/p>\n<\/li>\n

  • \n

    Jia, H. Y., Wang, J., Zhang, X. Y. & Wang, Y. P. Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Lett.<\/i> 3<\/b>, 86\u201390 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zheng, Z. Q., Yao, J. D., Wang, B. & Yang, G. W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep.<\/i> 5<\/b>, 11070 (2015).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kang, M. A. et al. Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Adv.<\/i> 8<\/b>, 11991\u201311996 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shiu, B. C., Liu, Y. L., Yuan, Q. Y., Lou, C. W. & Lin, J. H. Preparation and characterization of PEDOT:PSS\/TiO2 micro\/nanofiber-based gas sensors. Polymers<\/i> 14<\/b>, 1780 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, T. et al. Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process. Adv. Mater.<\/i> 34<\/b>, 2107696 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, K. et al. Rough-surface-enabled capacitive pressure sensors with 3D touch capability. Small<\/i> 13<\/b>, 1700368 (2017).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Haick, H., Broza, Y. Y., Mochalski, P., Ruzsanyi, V. & Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev.<\/i> 43<\/b>, 1423\u20131449 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n