{"id":498810,"date":"2024-01-28T19:00:00","date_gmt":"2024-01-29T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/harnessing-machine-learning-to-find-synergistic-combinations-for-fda-approved-cancer-drugs-scientific-reports\/"},"modified":"2024-01-29T18:51:55","modified_gmt":"2024-01-29T23:51:55","slug":"harnessing-machine-learning-to-find-synergistic-combinations-for-fda-approved-cancer-drugs-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/harnessing-machine-learning-to-find-synergistic-combinations-for-fda-approved-cancer-drugs-scientific-reports\/","title":{"rendered":"Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Chen, X. et al.<\/i> Drug\u2013target interaction prediction: databases, web servers and computational models. Brief. Bioinform.<\/i> 17<\/b>(4), 696\u2013712 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev.<\/i> 58<\/b>(3), 621\u2013681 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kelly, R. J. et al.<\/i> A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin. Cancer Res.<\/i> 17<\/b>(3), 569\u2013580 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, X. et al.<\/i> ASDCD: Antifungal synergistic drug combination database. PLoS ONE<\/i> 9<\/b>(1), e86499 (2014).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fitzgerald, J. B., Schoeberl, B., Nielsen, U. B. & Sorger, P. K. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol.<\/i> 2<\/b>(9), 458\u2013466 (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today<\/i> 12<\/b>(1\u20132), 34\u201342 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Borisy, A. A. et al.<\/i> Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci.<\/i> 100<\/b>(13), 7977\u20137982 (2003).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med.<\/i> 10<\/b>(12), S122\u2013S129 (2004).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Groll, A. H. & Walsh, T. J. Antifungal chemotherapy: Advances and perspectives. Swiss Med. Wkly.<\/i> 132<\/b>(2324), 303 (2002).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xu, K. -J., Hu, F. -Y., Song, J. & Zhao, X. -M. Exploring drug combinations in a drug-cocktail network. In 2011 IEEE International Conference on Systems Biology (ISB)<\/i> 382\u2013387 (2011).<\/p>\n<\/li>\n

  • \n

    Zhang, L. et al.<\/i> High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc. Natl. Acad. Sci.<\/i> 104<\/b>(11), 4606\u20134611 (2007).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, X. et al.<\/i> NLLSS: Predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput. Biol.<\/i> 12<\/b>(7), e1004975 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kong, W. et al.<\/i> Systematic review of computational methods for drug combination prediction. Comput. Struct. Biotechnol. J.<\/i> 20<\/b>, 2807\u20132814. https:\/\/doi.org\/10.1016\/j.csbj.2022.05.055<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mokhtari, R. B. et al.<\/i> Combination therapy in combating cancer. Oncotarget<\/i> 8<\/b>(23), 38022 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gilad, Y., Gellerman, G., Lonard, D. M. & O\u2019malley, B. W. Drug combination in cancer treatment\u2014From cocktails to conjugated combinations. Cancers<\/i> 13<\/b>(4), 1\u201326. https:\/\/doi.org\/10.3390\/cancers13040669<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sidorov, P., Naulaerts, S., Ariey-Bonnet, J., Pasquier, E. & Ballester, P. J. Predicting synergism of cancer drug combinations using NCI-ALMANAC data. Front. Chem.<\/i> 7<\/b>(July), 1\u201313. https:\/\/doi.org\/10.3389\/fchem.2019.00509<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ.<\/i> 22<\/b>(2), 151\u2013185. https:\/\/doi.org\/10.1016\/S0167-6296(02)00126-1<\/a> (2003).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Leh\u00e1r, J. et al.<\/i> Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol.<\/i> 3<\/b>(1), 80 (2007).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jansen, G. et al.<\/i> Chemogenomic profiling predicts antifungal synergies. Mol. Syst. Biol.<\/i> 5<\/b>(1), 338 (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung<\/i> 3<\/b>, 285\u2013290 (1953).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Loewe, S. Effect of combinations: Mathematical basis of problem. Arch. Exp. Pathol. Pharmakol.<\/i> 114<\/b>, 313\u2013326 (1926).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bliss, C. I. The toxicity of poisons applied jointly 1. Ann. Appl. Biol.<\/i> 26<\/b>(3), 585\u2013615 (1939).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chou, T.-C. & Talalay, P. Analysis of combined drug effects: A new look at a very old problem. Trends Pharmacol. Sci.<\/i> 4<\/b>, 450\u2013454 (1983).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chou, T. C. Quantitative dose-effect analysis and algorithms-a theoretical-study. Asia Pac. J. Pharmacol.<\/i> 2<\/b>(2), 93\u201399 (1987).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chou, T.-C. & Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul.<\/i> 22<\/b>, 27\u201355 (1984).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chou, T. C. Comparison of mass-action law with power law, probit law and logit law in dose-effect analyses. In Pharmacologist<\/i> 165 (1977).<\/p>\n<\/li>\n

  • \n

    Chou, T.-C. Derivation and properties of Michaelis\u2013Menten type and Hill type equations for reference ligands. J. Theor. Biol.<\/i> 59<\/b>(2), 253\u2013276 (1976).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Greco, W. R., Park, H. S. & Rustum, Y. M. Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-$\u03b2$-d<\/span>-arabinofuranosylcytosine. Cancer Res.<\/i> 50<\/b>(17), 5318\u20135327 (1990).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, C. H. et al.<\/i> Statistical metamodeling for revealing synergistic antimicrobial interactions. PloS ONE<\/i> 5<\/b>(11), e15472 (2010).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, S., Zhang, B. & Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol.<\/i> 5<\/b>(1), 1\u201313 (2011).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao, X.-M. et al.<\/i> Prediction of drug combinations by integrating molecular and pharmacological data. PLoS Comput. Biol.<\/i> 7<\/b>(12), e1002323 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, H., Zhang, P., Qu, X. A., Sanseau, P. & Yang, L. Systematic prediction of drug combinations based on clinical side-effects. Sci. Rep.<\/i> 4<\/b>(1), 1\u20137 (2014).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yin, N. et al.<\/i> Synergistic and antagonistic drug combinations depend on network topology. PloS ONE<\/i> 9<\/b>(4), e93960 (2014).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Iwata, H., Sawada, R., Mizutani, S., Kotera, M. & Yamanishi, Y. Large-scale prediction of beneficial drug combinations using drug efficacy and target profiles. J. Chem. Inf. Model.<\/i> 55<\/b>(12), 2705\u20132716 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, D., Zhang, H., Lu, P., Liu, X. & Cao, H. Synergy evaluation by a pathway\u2013pathway interaction network: A new way to predict drug combination. Mol. Biosyst.<\/i> 12<\/b>(2), 614\u2013623 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sun, Y. et al.<\/i> Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun.<\/i> 6<\/b>(1), 1\u201310 (2015).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    MathSciNet<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, X. et al.<\/i> Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med.<\/i> 83<\/b>, 35\u201343 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, L. et al.<\/i> DrugComboRanker: Drug combination discovery based on target network analysis. Bioinformatics<\/i> 30<\/b>(12), i228\u2013i236 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Malyutina, A. et al.<\/i> Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput. Biol.<\/i> 15<\/b>(5), e1006752 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jiang, P. et al.<\/i> Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput. Struct. Biotechnol. J.<\/i> 18<\/b>, 427\u2013438. https:\/\/doi.org\/10.1016\/j.csbj.2020.02.006<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, Q. & Xie, L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput. Biol.<\/i> 17<\/b>(2), e1008653 (2021).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, Y., Wei, Q., Yu, G., Gai, W., Li, Y. & Chen, X. DCDB 2.0: A major update of the drug combination database. Database<\/i> 2014<\/b> (2014).<\/p>\n<\/li>\n

  • \n

    Bansal, M. et al.<\/i> A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol.<\/i> 32<\/b>(12), 1213\u20131222 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xia, F. et al.<\/i> Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform.<\/i> 19<\/b>(18), 71\u201379 (2018).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Holbeck, S. L. et al.<\/i> The National Cancer Institute ALMANAC: A comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res.<\/i> 77<\/b>(13), 3564\u20133576 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    O\u2019Neil, J. et al.<\/i> An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther.<\/i> 15<\/b>(6), 1155\u20131162. https:\/\/doi.org\/10.1158\/1535-7163.MCT-15-0843<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, X., Guan, N.-N., Sun, Y.-Z., Li, J.-Q. & Qu, J. MicroRNA-small molecule association identification: From experimental results to computational models. Brief. Bioinform.<\/i> 21<\/b>(1), 47\u201361. https:\/\/doi.org\/10.1093\/bib\/bby098<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, C.-C., Zhao, Y. & Chen, X. Drug-pathway association prediction: From experimental results to computational models. Brief. Bioinform.<\/i> 22<\/b>(3), bbaa061. https:\/\/doi.org\/10.1093\/bib\/bbaa061<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    K. Hazelwood et al<\/i>. Applied machine learning at facebook: A datacenter infrastructure perspective. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)<\/i> 620\u2013629 (2018).<\/p>\n<\/li>\n

  • \n

    Langley, P. et al<\/i>. Selection of relevant features in machine learning. In Proceedings of the AAAI Fall Symposium on Relevance<\/i> 245\u2013271 (1994).<\/p>\n<\/li>\n

  • \n

    Breiman, L. Random forests. Mach. Learn.<\/i> 45<\/b>(1), 5\u201332 (2001).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Le Cessie, S. & Van Houwelingen, J. C. Ridge estimators in logistic regression. J. R. Stat. Soc. Ser. C (Appl. Stat.)<\/i> 41<\/b>(1), 191\u2013201 (1992).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumari, R. & Jose, J. Seizure detection in EEG using biorthogonal wavelet and fuzzy KNN classifier. Elixir Hum. Physiol.<\/i> 41<\/b>, 5766\u20135770 (2011).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Altay, O. & Ulas, M. Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children. In 2018 6th International Symposium on Digital Forensic and Security (ISDFS)<\/i> 1\u20134 (2018).<\/p>\n<\/li>\n

  • \n

    Kleinbaum, D. G., Kupper, L. L., Nizam, A. & Rosenberg, E. S. Applied Regression Analysis and Other Multivariable Methods<\/i> (Cengage Learning, 2013).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Costello, J. C. et al.<\/i> A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol.<\/i> 32<\/b>(12), 1202\u20131212 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics<\/i> 12<\/b>(1), 55\u201367 (1970).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wan, Q. & Pal, R. An ensemble based top performing approach for NCI-DREAM drug sensitivity prediction challenge. PloS ONE<\/i> 9<\/b>(6), e101183 (2014).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Julkunen, H. et al.<\/i> Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat. Commun.<\/i> 11<\/b>(1), 1\u201311 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ling, A. & Huang, R. S. Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action. Nat. Commun.<\/i> 11<\/b>(1), 1\u201313 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Preuer, K. et al.<\/i> DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformatics<\/i> 34<\/b>(9), 1538\u20131546 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ianevski, A. et al.<\/i> Prediction of drug combination effects with a minimal set of experiments. Nat. Mach. Intell.<\/i> 1<\/b>(12), 568\u2013577 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhai, J., Zhang, S. & Wang, C. The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers. Int. J. Mach. Learn. Cybern.<\/i> 8<\/b>(3), 1009\u20131017 (2017).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Raschka, S. An Overview of General Performance Metrics of Binary Classifier Systems<\/i>. arXiv preprint <\/i>arXiv:1410.5330<\/a> (2014).<\/p>\n<\/li>\n

  • \n

    Tarek, Z. et al.<\/i> Wind power prediction based on machine learning and deep learning models. Comput. Mater. Contin.<\/i> https:\/\/doi.org\/10.32604\/cmc.2023.032533<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Asteris, P. G. et al.<\/i> On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength. 1<\/i> 1<\/b>(1), 63 (2020).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    St, L. & Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst.<\/i> 6<\/b>(4), 259\u2013272 (1989).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wooditch, A., Johnson, N. J., Solymosi, R., Ariza, J. M. & Langton, S. Analysis of variance (ANOVA). In A Beginner\u2019s Guide to Statistics for Criminology and Criminal Justice Using R<\/i> (eds Wooditch, A. et al.<\/i>) 183\u2013208 (Springer, 2021).<\/p>\n

    Chapter<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, T.-H., Wang, C.-C., Zhang, L. & Chen, X. SNRMPACDC: Computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction. Brief. Bioinform.<\/i> 24<\/b>(1), bbac503. https:\/\/doi.org\/10.1093\/bib\/bbac503<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, C., Su, Q., Ding, Z., Zeng, W. & Zhou, Z. A novel clinical tool to predict cancer-specific survival in patients with primary pelvic sarcomas: A large population-based retrospective cohort study. Cancer Med.<\/i> 12<\/b>(2), 1279\u20131292. https:\/\/doi.org\/10.1002\/cam4.4998<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, H. et al.<\/i> Harmonizing across datasets to improve the transferability of drug combination prediction. Commun. Biol.<\/i> https:\/\/doi.org\/10.1038\/s42003-023-04783-5<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kuru, H. I., Tastan, O. & Cicek, A. E. MatchMaker: A deep learning framework for drug synergy prediction. IEEE\/ACM Trans. Comput. Biol. Bioinform.<\/i> 19<\/b>(4), 2334\u20132344. https:\/\/doi.org\/10.1109\/TCBB.2021.3086702<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zagidullin, B. et al.<\/i> DrugComb: An integrative cancer drug combination data portal. Nucl. Acids Res.<\/i> 47<\/b>(W1), W43\u2013W51. https:\/\/doi.org\/10.1093\/nar\/gkz337<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tang, Y.-C. & Gottlieb, A. SynPathy: Predicting drug synergy through drug-associated pathways using deep learning. Mol. Cancer Res.<\/i> 20<\/b>(5), 762\u2013769. https:\/\/doi.org\/10.1158\/1541-7786.MCR-21-0735<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El Khili, M. R., Memon, S. A. & Emad, A. MARSY: A multitask deep-learning framework for prediction of drug combination synergy scores. Bioinformatics<\/i> 39<\/b>(4), btad177 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guertin, A. D. et al.<\/i> Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition. Cancer Cell Int.<\/i> 12<\/b>(1), 45. https:\/\/doi.org\/10.1186\/1475-2867-12-45<\/a> (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Muellner, M. K. et al.<\/i> A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat. Chem. Biol.<\/i> https:\/\/doi.org\/10.1038\/nchembio.695<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kristina Preuer. Deep Learning in Drug Discovery<\/i>. Johannes Kepler University Linz, Institue for Machine Learning. Accessed: November 01 2024. [Online]. Available: https:\/\/epub.jku.at\/obvulihs\/content\/titleinfo\/3853666<\/a> (2019).<\/p>\n<\/li>\n

  • \n

    Chung, S. W. et al.<\/i> Metronomic oral doxorubicin in combination of Chk1 inhibitor MK-8776 for p53-deficient breast cancer treatment. Biomaterials<\/i> 182<\/b>, 35\u201343. https:\/\/doi.org\/10.1016\/j.biomaterials.2018.08.007<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Montano, R. et al.<\/i> Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: Cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer<\/i> 13<\/b>(1), 604. https:\/\/doi.org\/10.1186\/1471-2407-13-604<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Howard, D. et al.<\/i> Dinaciclib as an effective pan-cyclin dependent kinase inhibitor in platinum resistant ovarian cancer. Front. Oncol.<\/i> https:\/\/doi.org\/10.3389\/fonc.2022.1014280<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, T., Zhang, L., Payne, P. R. O. & Li, F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. In Translational Bioinformatics for Therapeutic Development in Methods in Molecular Biology<\/i> (ed. Markowitz, J.) 223\u2013238 (Springer US, 2021). https:\/\/doi.org\/10.1007\/978-1-0716-0849-4_12<\/a>.<\/p>\n

    Chapter<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, X. et al.<\/i> Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction. Bioinformatics<\/i> 38<\/b>(20), 4782\u20134789. https:\/\/doi.org\/10.1093\/bioinformatics\/btac579<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bukhari, A. B., Chan, G. K. & Gamper, A. M. Targeting the DNA damage response for cancer therapy by inhibiting the kinase WEE1. Front. Oncol.<\/i> https:\/\/doi.org\/10.3389\/fonc.2022.828684<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vlot, A. H. C., Aniceto, N., Menden, M. P., Ulrich-Merzenich, G. & Bender, A. Applying synergy metrics to combination screening data: Agreements, disagreements and pitfalls. Drug Discov. Today<\/i> 24<\/b>(12), 2286\u20132298. https:\/\/doi.org\/10.1016\/j.drudis.2019.09.002<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chien, W. et al.<\/i> Treatment for ovarian clear cell carcinoma with combined inhibition of WEE1 and ATR. J. Ovarian Res.<\/i> 16<\/b>(1), 80. https:\/\/doi.org\/10.1186\/s13048-023-01160-y<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Duran, I. et al.<\/i> Phase I targeted combination trial of sorafenib and erlotinib in patients with advanced solid tumors. Clin. Cancer Res.<\/i> 13<\/b>(16), 4849\u20134857. https:\/\/doi.org\/10.1158\/1078-0432.CCR-07-0382<\/a> (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, Y. J. et al.<\/i> A phase II trial to evaluate the efficacy of Bortezomib and liposomal doxorubicin in patients with BRCA Wild-type platinum-resistant recurrent ovarian cancer (KGOG 3044\/EBLIN). In Vivo<\/i> 36<\/b>(4), 1949\u20131958. https:\/\/doi.org\/10.21873\/invivo.12917<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bi, S. et al.<\/i> WEE1 inhibitor AZD1775 effectively inhibits the malignant phenotypes of esophageal squamous cell carcinoma in vitro and in vivo. Front. Pharmacol.<\/i> https:\/\/doi.org\/10.3389\/fphar.2019.00864<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lane, M. et al.<\/i> In vivo synergy between oncolytic reovirus and gemcitibane in ras-mutated human HCT116 xenografts. Cancer Res.<\/i> 67<\/b>(9_Supplement), 4812 (2007).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Patil, V. M. et al.<\/i> Beyond conventional chemotherapy, targeted therapy and immunotherapy in squamous cell cancer of the oral cavity. Oral Oncol.<\/i> 105<\/b>, 104673. https:\/\/doi.org\/10.1016\/j.oraloncology.2020.104673<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sakurikar, N., Thompson, R., Montano, R. & Eastman, A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget<\/i> 7<\/b>(2), 1380\u20131394 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Parsels, L. A. et al.<\/i> The contribution of DNA replication stress marked by high-intensity, pan-nuclear \u03b3H2AX staining to chemosensitization by CHK1 and WEE1 inhibitors. Cell Cycle<\/i> 17<\/b>(9), 1076\u20131086. https:\/\/doi.org\/10.1080\/15384101.2018.1475827<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tai, C.-J. Salvage therapy with sorafenib plus vinblastine and fluorouracil for metastatic renal cell carcinoma. Acta Oncol.<\/i> 48<\/b>(6), 931\u2013932. https:\/\/doi.org\/10.1080\/02841860903071351<\/a> (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kuhn, D. J. et al.<\/i> Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood<\/i> 120<\/b>(16), 3260\u20133270. https:\/\/doi.org\/10.1182\/blood-2011-10-386789<\/a> (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, X. et al.<\/i> Topical kinase inhibitors induce regression of cutaneous squamous cell carcinoma. Exp. Dermatol.<\/i> 28<\/b>(5), 609\u2013613. https:\/\/doi.org\/10.1111\/exd.13902<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Meng, X. et al.<\/i> AZD1775 increases sensitivity to olaparib and gemcitabine in cancer cells with p53 mutations. Cancers<\/i> https:\/\/doi.org\/10.3390\/cancers10050149<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Moreira, D. C. et al.<\/i> Targeting MYC-driven replication stress in medulloblastoma with AZD1775 and gemcitabine. J. Neurooncol.<\/i> 147<\/b>(3), 531\u2013545. https:\/\/doi.org\/10.1007\/s11060-020-03457-0<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yoo, J. Y. et al.<\/i> Bortezomib-induced unfolded protein response increases oncolytic HSV-1 Replication resulting in synergistic antitumor effects. Clin. Cancer Res.<\/i> 20<\/b>(14), 3787\u20133798. https:\/\/doi.org\/10.1158\/1078-0432.CCR-14-0553<\/a> (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Polley, E. et al.<\/i> Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression. J. Natl. Cancer Inst.<\/i> 108<\/b>(10), djw122 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sen, T., Gay, C. M. & Byers, L. A. Targeting DNA damage repair in small cell lung cancer and the biomarker landscape. Transl. Lung Cancer Res.<\/i> 7<\/b>(1), 50\u201368. https:\/\/doi.org\/10.21037\/tlcr.2018.02.03<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lin, A. B., McNeely, S. C. & Beckmann, R. P. Achieving precision death with cell-cycle inhibitors that target DNA replication and repair. Clin. Cancer Res.<\/i> 23<\/b>(13), 3232\u20133240. https:\/\/doi.org\/10.1158\/1078-0432.CCR-16-0083<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tanaka, N. et al.<\/i> Replication stress leading to apoptosis within the S-phase contributes to synergism between vorinostat and AZD1775 in HNSCC harboring high-risk TP53 mutation. Clin. Cancer Res.<\/i> 23<\/b>(21), 6541\u20136554. https:\/\/doi.org\/10.1158\/1078-0432.CCR-17-0947<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    He, L. et al.<\/i> Methods for high-throughput drug combination screening and synergy scoring. In Cancer Systems Biology: Methods and Protocols in Methods in Molecular Biology<\/i> (ed. von Stechow, L.) 351\u2013398 (Springer, 2018). https:\/\/doi.org\/10.1007\/978-1-4939-7493-1_17<\/a>.<\/p>\n

    Chapter<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Danishuddin, & Khan, A. U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov. Today<\/i> 21<\/b>(8), 1291\u20131302. https:\/\/doi.org\/10.1016\/j.drudis.2016.06.013<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n