{"id":497307,"date":"2024-01-24T19:00:00","date_gmt":"2024-01-25T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/electrical-pulse-stimulation-parameters-modulate-n2a-neuronal-differentiation-cell-death-discovery\/"},"modified":"2024-01-26T23:31:41","modified_gmt":"2024-01-27T04:31:41","slug":"electrical-pulse-stimulation-parameters-modulate-n2a-neuronal-differentiation-cell-death-discovery","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/electrical-pulse-stimulation-parameters-modulate-n2a-neuronal-differentiation-cell-death-discovery\/","title":{"rendered":"Electrical pulse stimulation parameters modulate N2a neuronal differentiation – Cell Death Discovery","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Du J, Zhen G, Chen H, Zhang S, Qing L, Yang X, et al. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials. 2018;181:347\u201359.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Senger JLB, Verge VMK, Macandili HSJ, Olson JL, Chan KM, Webber CA. Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration. Exp Neurol. 2018;302:75\u201384.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou P, He F, Liu B, Wei S. Nerve electrical stimulation enhances osseointegration of implants in the beagle. Sci Rep. 2019;9. https:\/\/doi.org\/10.1038\/S41598-019-41471-Z<\/a>.<\/p>\n<\/li>\n

  • \n

    Pettersen E, Shah FA, Ortiz-Catalan M. Enhancing osteoblast survival through pulsed electrical stimulation and implications for osseointegration. Sci Rep. 2021;11. https:\/\/doi.org\/10.1038\/S41598-021-01901-3<\/a>.<\/p>\n<\/li>\n

  • \n

    Pettersen E, Anderson J, Ortiz-Catalan M. Electrical stimulation to promote osseointegration of bone anchoring implants: a topical review. J Neuroeng Rehabil. 2022;19:1\u201315.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yin J, Jiande AE, Chen DZ. Mechanisms and potential applications of intestinal electrical stimulation. https:\/\/doi.org\/10.1007\/s10620-009-0884-3<\/a>.<\/p>\n<\/li>\n

  • \n

    Zhang J, Chen JDZ, Chen J. Systematic review: applications and future of gastric electrical stimulation. https:\/\/doi.org\/10.1111\/j.1365-2036.2006.03087.x<\/a>.<\/p>\n<\/li>\n

  • \n

    Ma R, Liang J, Huang W, Guo L, Cai W, Wang L, et al. Electrical stimulation enhances cardiac differentiation of human induced pluripotent stem cells for myocardial infarction therapy. Antioxid Redox Signal. 2018;28:371\u201384.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Au HTH, Cheng I, Chowdhury MF, Radisic M. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials. 2007;28:4277\u201393.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wolff CM, Kolb JF, Weltmann KD, von Woedtke T, Bekeschus S. Combination treatment with cold physical plasma and pulsed electric fields augments ros production and cytotoxicity in lymphoma. Cancers. 2020;12. https:\/\/doi.org\/10.3390\/CANCERS12040845<\/a>.<\/p>\n<\/li>\n

  • \n

    Tang G, Dong X, Huang X, Huang XJ, Liu H, Wang Y, et al. A natural diarylheptanoid promotes neuronal differentiation via activating ERK and PI3K-Akt dependent pathways. Neuroscience. 2015;303:389\u2013401.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Namsi A, Nury T, Khan AS, Leprince J, Vaudry D, Caccia C, et al. Octadecaneuropeptide (ODN) induces N2a cells differentiation through a PKA\/PLC\/PKC\/MEK\/ERK-dependent pathway: incidence on peroxisome, mitochondria, and lipid profiles. Molecules. 2019;24:3310.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M. Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods. 2010;186:60\u201367.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Evangelopoulos ME, Weis J, Kr\u00fcttgen A. Signalling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene. 2005;24:3309\u201318.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen L, Feng P, Zhu X, He S, Duan J, Zhou D. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK\/MAPK signalling pathway in N2a cells. J Cell Mol Med. 2016;20:2102\u201310.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Saragoni L, Hern\u00e1ndez P, Maccioni RB. Differential association of tau with subsets of microtubules containing posttranslationally-modified tubulin variants in neuroblastoma cells. Neurochem Res. 2000;25:59\u201370.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lu R, Jiang Y, Lai X, Liu S, Sun L, Zhou Z-W, et al. A shortage of FTH induces ROS and sensitizes RAS-proficient neuroblastoma N2A cells to ferroptosis. Int J Mol Sci. 2021. https:\/\/doi.org\/10.3390\/ijms22168898<\/a>.<\/p>\n<\/li>\n

  • \n

    Jain S, Sharma A, Basu B. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes. Biomaterials. 2013;34:9252\u201363.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao H, Steiger A, Nohner M, Ye H. Specific intensity direct current (DC) electric field improves neural stem cell migration and enhances differentiation towards \u03b2III-tubulin+ neurons. PLoS ONE. 2015;10. https:\/\/doi.org\/10.1371\/journal.pone.0129625<\/a>.<\/p>\n<\/li>\n

  • \n

    Imaninezhad M, Pemberton K, Xu F, Kalinowski K, Bera R, Zustiak SP. Directed and enhanced neurite outgrowth following exogenous electrical stimulation on carbon nanotube-hydrogel composites. J Neural Eng. 2018;15. https:\/\/doi.org\/10.1088\/1741-2552\/aad65b<\/a>.<\/p>\n<\/li>\n

  • \n

    Grossemy S, Chan PPY, Doran PM. Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Integr Biol. 2019;11:264\u201379.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chang HF, Lee YS, Tang TK, Cheng JY. Pulsed DC electric field-induced differentiation of cortical neural precursor cells. PLoS ONE. 2016;11:1\u201316.<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pelletier SJ, Lagace M, St-Amour I, Arsenault D, Cisbani G, Chabrat A, et al. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int J Neuropsychopharmacol. 2015;18:1\u201316.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar M, Katyal A. Data on retinoic acid and reduced serum concentration induced differentiation of Neuro-2a neuroblastoma cells. Data Brief. 2018;21:2435\u201340.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Spieker N, Van Sluis P, Beitsma M, Boon K, Van Schaik BDC, Van Kampen AHC, et al. The MEIS1 oncogene is highly expressed in neuroblastoma and amplified in cell line IMR32. Genomics. 2001;71:214\u201321.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Geerts D, Schilderink N, Jorritsma G, Versteeg R. The role of the MEIS homeobox genes in neuroblastoma. Cancer Lett. 2003;197:87\u201392.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao Z, Ure K, Ables JL, Lagace DC, Nave KA, Goebbels S, et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci. 2009;12:1090\u20132.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science. 1995;268:836\u201344.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar A, Nune KC, Misra RDK. Understanding the response of pulsed electric field on osteoblast functions in three-dimensional mesh structures. J Biomater Appl. 2016;31:594\u2013605.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang Y, Cui H, Wu Z, Wu N, Wang Z, Chen X, et al. Modulation of osteogenesis in MC3T3-E1 cells by different frequency electrical stimulation. 2016. https:\/\/doi.org\/10.1371\/journal.pone.0154924<\/a>.<\/p>\n<\/li>\n

  • \n

    Chen C, Bai X, Ding Y, Lee I-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res. 2019;23:25.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nuccitelli R. Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat Prot Dosim. 2003;106:375\u201383.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    P\u00e9rez P, Huertas G, Olmo A, Maldonado-Jacobi A, Serrano J, Mart\u00edn M, et al. Remote cell growth sensing using self-sustained bio-oscillations. Sensors. 2018;18:2550.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Richetin K, Mence Leclerc C, Toni N, Gallopin T, Phane Pech S, Roybon L, et al. Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer\u2019s disease. https:\/\/doi.org\/10.1093\/brain\/awu354<\/a>.<\/p>\n<\/li>\n

  • \n

    Matsuda-Ito K, Matsuda T, Nakashima K. Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types. Sci Rep. 2022;12:17980.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Song Z, Han X, Shen L, Zou H, Zhang B, Liu J, et al. PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K\/Akt\/GSK3\u03b2 pathway in vitro. 2018. https:\/\/doi.org\/10.1016\/j.yexcr.2018.01.001<\/a>.<\/p>\n<\/li>\n

  • \n

    Licausi F, Hartman NW. Molecular sciences role of mTOR complexes in neurogenesis. https:\/\/doi.org\/10.3390\/ijms19051544<\/a>.<\/p>\n<\/li>\n

  • \n

    Pande N, Chandrasekar SK, Lohse D, Mul G, Wood JA, Mei BT, et al. Electrochemically induced pH change: time-resolved confocal fluorescence microscopy measurements and comparison with numerical model. J Phys Chem Lett. 2020;11:7042\u20138.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171\u201398.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bielfeldt M, Budde-Sagert K, Weis N, Buenning M, Staehlke S, Zimmermann J, et al. Discrimination between the effects of pulsed electrical stimulation and electrochemically conditioned medium on human osteoblasts. J Biol Eng. 2023;17. https:\/\/doi.org\/10.1186\/s13036-023-00393-1<\/a>.<\/p>\n<\/li>\n

  • \n

    Mobini S, Leppik L, Parameswaran VT, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ. 2017;2017:1\u201315.<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pietronave S, Zamperone A, Oltolina F, Colangelo D, Follenzi A, Novelli E, et al. Monophasic and biphasic electrical stimulation induces a precardiac differentiation in progenitor cells isolated from human heart. Stem Cells Dev. 2014;23:888\u201398.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, et al. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res. 2009;315:3611\u20139.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Carr RM, Oranu A, Khungar V. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation. Physiol Behav. 2016;176:139\u201348.<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Roh J, Schellhardt L, Keane GC, Hunter DA, Moore AM, Snyder-Warwick AK, et al. Short-duration, pulsatile, electrical stimulation therapy accelerates axon regeneration and recovery following tibial nerve injury and repair in rats. Plast Reconstr Surg. 2022;149:681e\u201390e.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xiong GM, Do AT, Wang JK, Yeoh CL, Yeo KS, Choong C. Development of a miniaturized stimulation device for electrical stimulation of cells. J Biol Eng. 2015;9. https:\/\/doi.org\/10.1186\/s13036-015-0012-1<\/a>.<\/p>\n<\/li>\n

  • \n

    Han S, Kim D, Kim H, Park JW, Youn I. Electrical stimulation inhibits cytosine arabinoside-induced neuronal death by preventing apoptosis in dorsal root ganglion neurons. Neuroreport. 2016;27:1217\u201324.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bonisoli A, Marino A, Ciofani G, Greco F. Topographical and electrical stimulation of neuronal cells through microwrinkled conducting polymer biointerfaces. Macromol Biosci. 2017;17. https:\/\/doi.org\/10.1002\/MABI.201700128<\/a>.<\/p>\n<\/li>\n

  • \n

    Jeong SH, Jun SB, Song JK, Kim SJ. Activity-dependent neuronal cell migration induced by electrical stimulation. Med Biol Eng Comput. 2009;47:93\u201399.<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chang K-A, Kim JW, Kim JA, Lee S, Kim S, Suh WH, et al. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS ONE. 2011;6:e18738.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim IS, Song JK, Zhang YL, Lee TH, Cho TH, Song YM, et al. Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochim Biophys Acta Mol Cell Res. 2006;1763:907\u201316.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ercan B, Webster TJ. The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials. 2010;31:3684\u201393.<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mart\u00edn D, Bocio-Nu\u00f1ez J, Scagliusi SF, P\u00e9rez P, Huertas G, Y\u00fafera A, et al. DC electrical stimulation enhances proliferation and differentiation on N2a and MC3T3 cell lines. J Biol Eng. 2022;16. https:\/\/doi.org\/10.1186\/s13036-022-00306-8<\/a>.<\/p>\n<\/li>\n

  • \n

    Fern\u00e1ndez. D, Garc\u00eda. P, Mart\u00edn. M, Daza. P, Serrano-Viseas. J, Huertas. G et al. Effects of electrical fields on neuroblastoma (N2A) cell differentiation: preliminary results. In: Proceedings of the 14th international joint conference on biomedical engineering systems and technologies – Volume 1: BIODEVICES. Lisbon, Portugal: SciTePress; 2021. p. 152\u20139.<\/p>\n<\/li>\n

  • \n

    Correa-V\u00e1zquez JF, Ju\u00e1rez-Vicente F, Garc\u00eda-Guti\u00e9rrez P, Barysch SV, Melchior F, Garc\u00eda-Dom\u00ednguez M. The Sumo proteome of proliferating and neuronal-differentiating cells reveals Utf1 among key Sumo targets involved in neurogenesis. https:\/\/doi.org\/10.1038\/s41419-021-03590-2<\/a>.<\/p>\n<\/li>\n

  • \n

    Gavil\u00e1n E, S\u00e1nchez-Aguayo I, Daza P, Ruano D. GSK-3\u03b2 signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition. Cell Death Dis. 2013;4:572.<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n