{"id":497266,"date":"2024-01-26T19:00:00","date_gmt":"2024-01-27T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/immunoinformatics-approaches-in-developing-a-novel-multi-epitope-chimeric-vaccine-protective-against-saprolegnia-parasitica-scientific-reports\/"},"modified":"2024-01-26T22:12:55","modified_gmt":"2024-01-27T03:12:55","slug":"immunoinformatics-approaches-in-developing-a-novel-multi-epitope-chimeric-vaccine-protective-against-saprolegnia-parasitica-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/immunoinformatics-approaches-in-developing-a-novel-multi-epitope-chimeric-vaccine-protective-against-saprolegnia-parasitica-scientific-reports\/","title":{"rendered":"Immunoinformatics approaches in developing a novel multi-epitope chimeric vaccine protective against Saprolegnia parasitica – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Kar, D. Chapter 1\u2014Introduction. In Epizootic Ulcerative Fish Disease Syndrome<\/i> (ed. Kar, D.) 1\u201319 (Academic Press, 2016).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chong, R.S.-M. Chapter 53\u2014Saprolegniasis. In Aquaculture Pathophysiology<\/i> (eds Kibenge, F. S. B. et al.<\/i>) 645\u2013650 (Academic Press, 2022).<\/p>\n

    Chapter<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pavi\u0107, D. et al.<\/i> Tracing the oomycete pathogen Saprolegnia parasitica<\/i> in aquaculture and the environment. Sci. Rep.<\/i> 12<\/b>, 16646. https:\/\/doi.org\/10.1038\/s41598-022-16553-0<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lone, S. & Manohar, S. Saprolegnia parasitica<\/i>, a lethal oomycete pathogen: Demands to be controlled. J. Infect. Mol. Biol.<\/i> 6<\/b>, 44. https:\/\/doi.org\/10.17582\/journal.jimb\/2018\/6.2.36.44<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Buchmann, K., James, B., Dalvin, S., \u00d8verg\u00e5rd, A. C. & Vendramin, N. (Consejo Superior de Investigaciones Cient\u00edficas (Espa\u00f1a), 2020).<\/p>\n<\/li>\n

  • \n

    Ortega, C., Fernandez, A. B., Muzquiz, J. L., Ania, S. & Gimeno, O. Health risks associated with the migration of Atlantic salmon (Salmo salar<\/i> L.): An epidemiological surveillance programme in Northern Spain. Rev. Sci. Tech.<\/i> 24<\/b>, 887\u2013898 (2005).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ciepli\u0144ski, M., Kasprzak, M., Grandtke, M., Giertych, M. J. & Steliga, A. Pattern of secondary infection with spp. in wild spawners of UDN-affected sea trout Salmo trutta<\/i> m. (L.), the S\u0142upia River, N Poland. Oceanol. Hydrobiol. Stud.<\/i> 47<\/b>, 230\u2013238. https:\/\/doi.org\/10.1515\/ohs-2018-0022<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Whipps, C. M. & Kent, M. L. Chapter 41\u2014Bacterial and fungal diseases of zebrafish. In The Zebrafish in Biomedical Research<\/i> (eds Cartner, S. C. et al.<\/i>) 495\u2013508 (Academic Press, 2020).<\/p>\n

    Chapter<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Willoughby, L. G. & Roberts, R. J. Towards strategic use of fungicides against Saprolegnia parasitica<\/i> in salmonid fish hatcheries. J. Fish Dis.<\/i> 15<\/b>, 1\u201313. https:\/\/doi.org\/10.1111\/j.1365-2761.1992.tb00631.x<\/a> (1992).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alderman, D. J. Malachite green: A review. J. Fish Dis.<\/i> 8<\/b>, 289\u2013298. https:\/\/doi.org\/10.1111\/j.1365-2761.1985.tb00945.x<\/a> (1985).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Srivastava, S., Sinha, R. & Roy, D. Toxicological effects of malachite green. Aquat. Toxicol.<\/i> 66<\/b>, 319\u2013329. https:\/\/doi.org\/10.1016\/j.aquatox.2003.09.008<\/a> (2004).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Culp, S. J. et al.<\/i> Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol.<\/i> 44<\/b>, 1204\u20131212. https:\/\/doi.org\/10.1016\/j.fct.2006.01.016<\/a> (2006).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    He, J., Mo, P., Luo, Y.-S. & Yang, P.-H. Strategies for solving the issue of malachite green residues in aquatic products: A review. Aquacult. Res.<\/i> 2023<\/b>, 8578570. https:\/\/doi.org\/10.1155\/2023\/8578570<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pipoyan, D., Stepanyan, S., Beglaryan, M., Stepanyan, S. & Mantovani, A. Health risk assessment of toxicologically relevant residues in emerging countries: A pilot study on Malachite Green residues in farmed freshwater fish of Armenia. Food Chem. Toxicol.<\/i> 143<\/b>, 111526. https:\/\/doi.org\/10.1016\/j.fct.2020.111526<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Andersson, M. G. & Cerenius, L. Pumilio homologue from Saprolegnia parasitica<\/i> specifically expressed in undifferentiated spore cysts. Eukaryotic Cell<\/i> 1<\/b>, 105\u2013111. https:\/\/doi.org\/10.1128\/ec.1.1.105-111.2002<\/a> (2002).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Matthews, E., Ellison, A. & Cable, J. Saprolegnia parasitica<\/i> zoospore activity and host survival indicates isolate variation in host preference. Fungal Biol.<\/i> 125<\/b>, 260\u2013268. https:\/\/doi.org\/10.1016\/j.funbio.2020.11.002<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Robertson, E. J. et al.<\/i> Oomycete Genetics and Genomics<\/i> 407\u2013424 (Springer, 2009).<\/p>\n

    Book<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Di\u00e9guez-Uribeondo, J., Cerenius, L. & S\u00f6derh\u00e4ll, K. Repeated zoospore emergence in Saprolegnia parasitica<\/i>. Mycol. Res.<\/i> 98<\/b>, 810\u2013815. https:\/\/doi.org\/10.1016\/S0953-7562(09)81060-5<\/a> (1994).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wawra, S. et al.<\/i> Host-targeting protein 1 (SpHtp1) from the oomycete Saprolegnia parasitica<\/i> translocates specifically into fish cells in a tyrosine-O-sulphate-dependent manner. Proc. Natl. Acad. Sci.<\/i> 109<\/b>, 2096\u20132101. https:\/\/doi.org\/10.1073\/pnas.1113775109<\/a> (2012).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Trusch, F. et al.<\/i> Cell entry of a host-targeting protein of oomycetes requires gp96. Nat. Commun.<\/i> 9<\/b>, 2347. https:\/\/doi.org\/10.1038\/s41467-018-04796-3<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rezinciuc, S., Sandoval-Sierra, J. V., Ruiz-Le\u00f3n, Y., van West, P. & Di\u00e9guez-Uribeondo, J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica<\/i>. PLoS ONE<\/i> 13<\/b>, e0190361. https:\/\/doi.org\/10.1371\/journal.pone.0190361<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Srivastava, V., Rezinciuc, S. & Bulone, V. Quantitative proteomic analysis of four developmental stages of Saprolegnia parasitica<\/i>. Front. Microbiol.<\/i> 8<\/b>, 2658. https:\/\/doi.org\/10.3389\/fmicb.2017.02658<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar, S., Mandal, R. S., Bulone, V. & Srivastava, V. Identification of growth inhibitors of the fish pathogen Saprolegnia parasitica<\/i> using in silico subtractive proteomics, computational modeling, and biochemical validation. Front. Microbiol.<\/i> 11<\/b>, 571093. https:\/\/doi.org\/10.3389\/fmicb.2020.571093<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kuang, G., Bulone, V. & Tu, Y. Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P3<\/sub> with the pleckstrin homology domain of an oomycete cellulose synthase. Sci. Rep.<\/i> 6<\/b>, 20555. https:\/\/doi.org\/10.1038\/srep20555<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Saldanha, L., Langel, \u00dc. & Vale, N. In silico studies to support vaccine development. Pharmaceutics<\/i> 15<\/b>, 654 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vita, R. et al.<\/i> The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res.<\/i> 47<\/b>, D339\u2013D343. https:\/\/doi.org\/10.1093\/nar\/gky1006<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics<\/i> 32<\/b>, 511\u2013517. https:\/\/doi.org\/10.1093\/bioinformatics\/btv639<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nielsen, M. & Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform.<\/i> 10<\/b>, 296. https:\/\/doi.org\/10.1186\/1471-2105-10-296<\/a> (2009).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform.<\/i> 8<\/b>, 4. https:\/\/doi.org\/10.1186\/1471-2105-8-4<\/a> (2007).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Doytchinova, I. & Flower, D. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J.<\/i> 1<\/b>, 22\u201326. https:\/\/doi.org\/10.2174\/1875035400801010022<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shey, R. A. et al.<\/i> In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci. Rep.<\/i> 9<\/b>, 4409. https:\/\/doi.org\/10.1038\/s41598-019-40833-x<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, X., Zaro, J. L. & Shen, W.-C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev.<\/i> 65<\/b>, 1357\u20131369. https:\/\/doi.org\/10.1016\/j.addr.2012.09.039<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mittal, A., Sasidharan, S., Raj, S., Balaji, S. N. & Saudagar, P. Exploring the zika genome to design a potential multiepitope vaccine using an immunoinformatics approach. Int. J. Peptide Res. Therap.<\/i> 26<\/b>, 2231\u20132240. https:\/\/doi.org\/10.1007\/s10989-020-10020-y<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yano, A. et al.<\/i> An ingenious design for peptide vaccines. Vaccine<\/i> 23<\/b>, 2322\u20132326. https:\/\/doi.org\/10.1016\/j.vaccine.2005.01.031<\/a> (2005).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gu, Y. et al.<\/i> Vaccination with a paramyosin-based multi-epitope vaccine elicits significant protective immunity against Trichinella spiralis<\/i> infection in mice. Front. Microbiol.<\/i> 8<\/b>, 475. https:\/\/doi.org\/10.3389\/fmicb.2017.01475<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, Y. et al.<\/i> In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations. Hum. Vaccines Immunotherap.<\/i> 11<\/b>, 795\u2013805. https:\/\/doi.org\/10.1080\/21645515.2015.1012017<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sarkar, B., Ullah, M. A., Johora, F. T., Taniya, M. A. & Araf, Y. Immunoinformatics-guided designing of epitope-based subunit vaccines against the SARS coronavirus-2 (SARS-CoV-2). Immunobiology<\/i> 225<\/b>, 151955. https:\/\/doi.org\/10.1016\/j.imbio.2020.151955<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Livingston, B. et al.<\/i> A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes1. J. Immunol.<\/i> 168<\/b>, 5499\u20135506. https:\/\/doi.org\/10.4049\/jimmunol.168.11.5499<\/a> (2002).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mansoor, S., Baek, M., Juergens, D., Watson, J. L. & Baker, D. Zero-shot mutation effect prediction on protein stability and function using RoseTTAFold. Protein Sci.<\/i> 32<\/b>, e4780. https:\/\/doi.org\/10.1002\/pro.4780<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lahiri, T., Singh, K., Pal, M. K. & Verma, G. Protein structure validation using a semi-empirical method. Bioinformation<\/i> 8<\/b>(20), 984\u2013987. https:\/\/doi.org\/10.6026\/97320630008984<\/a> (2012).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kiefer, F., Arnold, K., K\u00fcnzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL repository and associated resources. Nucleic Acids Res.<\/i> 37<\/b>, D387\u2013D392. https:\/\/doi.org\/10.1093\/nar\/gkn750<\/a> (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res.<\/i> 35<\/b>, W407\u2013W410. https:\/\/doi.org\/10.1093\/nar\/gkm290<\/a> (2007).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Garg, V. K. et al.<\/i> MFPPI\u2014Multi FASTA ProtParam interface. Bioinformation<\/i> 12<\/b>(2), 74\u201377. https:\/\/doi.org\/10.6026\/97320630012074<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP v.2\u2014A server for in silico prediction of allergens. J. Mol. Model.<\/i> 20<\/b>, 2278. https:\/\/doi.org\/10.1007\/s00894-014-2278-5<\/a> (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Garg, A. & Gupta, D. VirulentPred: A SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinform.<\/i> 9<\/b>, 62. https:\/\/doi.org\/10.1186\/1471-2105-9-62<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R. & Warwicker, J. Protein\u2013Sol: A web tool for predicting protein solubility from sequence. Bioinformatics<\/i> 33<\/b>, 3098\u20133100. https:\/\/doi.org\/10.1093\/bioinformatics\/btx345<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ponomarenko, J. et al.<\/i> ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform.<\/i> 9<\/b>, 514. https:\/\/doi.org\/10.1186\/1471-2105-9-514<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    R\u00f8dland, E. K., Ager-Wick, E., Halvorsen, B., M\u00fcller, F. & Fr\u00f8land, S. S. Toll like receptor 5 (TLR5) may be involved in the immunological response to Aspergillus fumigatus<\/i> in vitro. Med. Mycol.<\/i> 49<\/b>, 375\u2013379. https:\/\/doi.org\/10.3109\/13693786.2010.531772<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Akhtar, N., Joshi, A., Kaushik, V., Kumar, M. & Mannan, M.A.-U. In-silico design of a multivalent epitope-based vaccine against Candida auris<\/i>. Microbial Pathog.<\/i> 155<\/b>, 104879. https:\/\/doi.org\/10.1016\/j.micpath.2021.104879<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Akhtar, N., Singh, A., Upadhyay, A. K. & Mannan, M.A.-U. Design of a multi-epitope vaccine against the pathogenic fungi Candida tropicalis<\/i> using an in silico approach. J. Genet. Eng. Biotechnol.<\/i> 20<\/b>, 140. https:\/\/doi.org\/10.1186\/s43141-022-00415-3<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kozakov, D. et al.<\/i> The ClusPro web server for protein\u2013protein docking. Nat. Protoc.<\/i> 12<\/b>, 255\u2013278. https:\/\/doi.org\/10.1038\/nprot.2016.169<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yuan, S., Chan, H. C. S. & Hu, Z. Using PyMOL as a platform for computational drug design. WIREs Comput. Mol. Sci.<\/i> 7<\/b>, e1298. https:\/\/doi.org\/10.1002\/wcms.1298<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Abraham, M. J. et al.<\/i> GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX<\/i> 1<\/b>, 19\u201325. https:\/\/doi.org\/10.1016\/j.softx.2015.06.001<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Van Der Spoel, D. et al.<\/i> GROMACS: Fast, flexible, and free. J. Comput. Chem.<\/i> 26<\/b>, 1701\u20131718. https:\/\/doi.org\/10.1002\/jcc.20291<\/a> (2005).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Witeska, M., Kondera, E., \u0141ugowska, K. & Bojarski, B. Hematological methods in fish\u2014Not only for beginners. Aquaculture<\/i> 547<\/b>, 737498. https:\/\/doi.org\/10.1016\/j.aquaculture.2021.737498<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Olson, K. R. & Hoagland, T. M. Effects of freshwater and saltwater adaptation and dietary salt on fluid compartments, blood pressure, and venous capacitance in trout. Am. J. Physiol. Regul. Integr. Compar. Physiol.<\/i> 294<\/b>, R1061\u2013R1067. https:\/\/doi.org\/10.1152\/ajpregu.00698.2007<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vasylkiv, O. Y., Kubrak, O. I., Storey, K. B. & Lushchak, V. I. Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pesticide Biochem. Physiol.<\/i> 101<\/b>, 1\u20135. https:\/\/doi.org\/10.1016\/j.pestbp.2011.05.005<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yasui, G. S. et al.<\/i> Flow cytometric analysis from fish samples stored at low, ultra-low and cryogenic temperatures. Cryobiology<\/i> 95<\/b>, 68\u201371. https:\/\/doi.org\/10.1016\/j.cryobiol.2020.06.004<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vald\u00e9s-Tresanco, M. S., Vald\u00e9s-Tresanco, M. E., Valiente, P. A. & Moreno, E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput.<\/i> 17<\/b>, 6281\u20136291. https:\/\/doi.org\/10.1021\/acs.jctc.1c00645<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rapin, N., Lund, O. & Castiglione, F. Immune system simulation online. Bioinformatics<\/i> 27<\/b>, 2013\u20132014. https:\/\/doi.org\/10.1093\/bioinformatics\/btr335<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Grote, A. et al.<\/i> JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res.<\/i> 33<\/b>, W526\u2013W531. https:\/\/doi.org\/10.1093\/nar\/gki376<\/a> (2005).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Choi, S.-Y., Ro, H. & Yi, H. A prerequisite for cloning. In DNA Cloning: A Hands-On Approach<\/i> (eds Choi, S.-Y. et al.<\/i>) 5\u201328 (Springer, 2019).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pizza, M. et al.<\/i> Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science<\/i> 287<\/b>, 1816\u20131820. https:\/\/doi.org\/10.1126\/science.287.5459.1816<\/a> (2000).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sette, A. & Rappuoli, R. Reverse vaccinology: Developing vaccines in the era of genomics. Immunity<\/i> 33<\/b>, 530\u2013541. https:\/\/doi.org\/10.1016\/j.immuni.2010.09.017<\/a> (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Srivastava, P. & Jain, K. C. Computer aided reverse vaccinology: A game-changer approach for vaccine development. Comb. Chem. High Through. Screen.<\/i> 26<\/b>, 1813\u20131821. https:\/\/doi.org\/10.2174\/1386207325666220930124013<\/a> (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n