{"id":493039,"date":"2024-01-20T19:00:00","date_gmt":"2024-01-21T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/atmospheric-non-thermal-plasma-inactivation-of-ascosphaera-apis-the-causative-agent-of-chalkbrood-disease-in-honeybee-scientific-reports\/"},"modified":"2024-01-21T17:13:04","modified_gmt":"2024-01-21T22:13:04","slug":"atmospheric-non-thermal-plasma-inactivation-of-ascosphaera-apis-the-causative-agent-of-chalkbrood-disease-in-honeybee-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/atmospheric-non-thermal-plasma-inactivation-of-ascosphaera-apis-the-causative-agent-of-chalkbrood-disease-in-honeybee-scientific-reports\/","title":{"rendered":"Atmospheric non-thermal plasma inactivation of Ascosphaera apis, the causative agent of chalkbrood disease in honeybee – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Spiltoir, C. F. Life cycle of Ascosphaera<\/i> apis<\/i> (Pericystis<\/i> apis<\/i>). Am. J. Bot.<\/i> 42<\/b>, 501\u2013508 (1955).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Spiltoir, C. F. & Olive, L. S. A reclassification of the genus Pericystis<\/i> betts<\/i>. Mycologia<\/i> 47<\/b>(2), 238\u2013244 (1955).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kluser, S. & Peduzzi, P. Global Pollinator Decline: A Literature Review\u2014A Scientific Report About the Current Situation, Recent Findings and Potential Solution to Shed Light on the Global Pollinator Crisis<\/i> (2007).<\/p>\n<\/li>\n

  • \n

    Bailey, L. Infectious Diseases of the Honeybee<\/i> (ed. Bailey, L.). Vol. 176 (Land Books Ltd, 1963).<\/p>\n<\/li>\n

  • \n

    De Jong, D. Experimental enhancement of chalk brood infections. Bee World<\/i> 57<\/b>, 114\u2013115 (1976).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gilliam, M., Iii, S. T. & Rose, J. B. Chalkbrood disease of honeybees, Apis<\/i> mellifera<\/i> L: A progress report. Apidologie<\/i> 9<\/b>, 75\u201389 (1978).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gilliam, M. & Vanderleyden, J. Honeybee Pests, Predators, and Diseases<\/i>. 3rd ed. (AI Root, 1997).<\/p>\n<\/li>\n

  • \n

    Bailey, L. & Ball, B. V. Honeybee Pathology<\/i> (Academic Press, 1991).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nelson, D. & Ta, G. Field and laboratory studies on chalkbrood disease of honeybees. In Field and Laboratory Studies on Chalkbrood Disease of Honeybees<\/i> (1982).<\/p>\n<\/li>\n

  • \n

    Aronstein, K. A. & Murray, K. D. Chalkbrood disease in honeybees. J. Invertebr. Pathol.<\/i> 103<\/b>, S20\u2013S29 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chantawannakul, P., Puchanichanthranon, T. & Wongsiri, S. Inhibitory effects of some medicinal plant extracts on the growth of Ascosphaera<\/i> apis<\/i>. Acta Hortic.<\/i> https:\/\/doi.org\/10.17660\/ActaHortic.2005.678.26<\/a> (2005).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gilliam, M., Iii, S. T. & Richardson, G. V. Hygienic behavior of honeybees in relation to chalkbrood disease. Apidologie<\/i> 14<\/b>, 29\u201339 (1983).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, T. P. Ultrastructural changes in the spore and mycelia of Ascosphaera<\/i> apis<\/i> after treatment with benomyl (Benlate 50 W). Mycopathologia<\/i> 116<\/b>, 23\u201328 (1991).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Calderone, N. W., Shimanuki, H. & Allen-Wardell, G. An in vitro evaluation of botanical compounds for the control of the honeybee pathogens Bacillus<\/i> larvae<\/i> and Ascosphaera<\/i> apis<\/i>, and the secondary invader B<\/i>. alvei<\/i>. J. Essent. Oil Res.<\/i> 6<\/b>, 279\u2013287 (1994).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mourad, A. K., Zaghloul, O. A., El Kady, M. B., Nemat, F. M. & Morsy, M. E. A novel approach for the management of the chalkbrood disease infesting honeybee Apis<\/i> mellifera<\/i> L. (Hymenoptera: Apidae) colonies in Egypt. Commun. Agric. Appl. Biol. Sci.<\/i> 70<\/b>, 601\u2013611 (2005).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chaimanee, V., Thongtue, U., Sornmai, N., Songsri, S. & Pettis, J. S. Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus<\/i> larvae<\/i> and Ascosphaera<\/i> apis<\/i> and their topical toxicity to Apis mellifera<\/i> adults. JAM<\/i> 123<\/b>, 1160\u20131167 (2017).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ansari, M. J. et al.<\/i> In vitro evaluation of the effects of some plant essential oils on Ascosphaera<\/i> apis<\/i>, the causative agent of Chalkbrood disease. Saudi J. Biol. Sci.<\/i> 24<\/b>, 1001\u20131006 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Park, S. Y. & Ha, S.-D. Application of cold oxygen plasma for the reduction of Cladosporium<\/i> cladosporioides<\/i> and Penicillium<\/i> citrinum<\/i> on the surface of dried filefish (Stephanolepis<\/i> cirrhifer<\/i>) fillets. Int. J. Food Sci. Tech.<\/i> 50<\/b>, 966\u2013973 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Thirumdas, R. et al.<\/i> Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Tech.<\/i> 77<\/b>, 21\u201331 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, L. et al.<\/i> Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chem. Eng. J.<\/i> 421<\/b>, 127742 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ott, L. C., Appleton, H. J., Shi, H., Keener, K. & Mellata, M. High voltage atmospheric cold plasma treatment inactivates Aspergillus<\/i> flavus<\/i> spores and deoxynivalenol toxin. Food Microbiol.<\/i> 95<\/b>, 103669 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cullen, P. J. & Milosavljevi\u0107, V. Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air. PTEP<\/i> 2015<\/b>, 063J01 (2015).<\/p>\n<\/li>\n

  • \n

    Kang, M. H. et al.<\/i> Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. PLOS ONE<\/i> 10<\/b>, e0139263 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shen, J. et al.<\/i> Bactericidal effects against S<\/i>. aureus<\/i> and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep.<\/i> 6<\/b>, 28505 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shaw, P. et al.<\/i> Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci. Rep.<\/i> 8<\/b>, 11268 (2018).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ki, S. H. et al.<\/i> Influence of nonthermal atmospheric plasma-activated water on the structural, optical, and biological properties of Aspergillus<\/i> brasiliensis<\/i> spores. Appl. Sci.<\/i> 10<\/b>, 6378 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, D., Liu, H., Zhou, L., Xie, J. & He, C. Plasma-activated water production and its application in agriculture. J. Sci. Food Agric.<\/i> 101<\/b>, 4891\u20134899 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, Y., Cheng, J.-H. & Sun, D.-W. Subcellular damages of Colletotrichum<\/i> asianum<\/i> and inhibition of mango anthracnose by dielectric barrier discharge plasma. Food Chem.<\/i> 381<\/b>, 132197 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lu, H., Patil, S., Keener, K. M., Cullen, P. J. & Bourke, P. Bacterial inactivation by high-voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA. J. Appl. Microbiol.<\/i> 116<\/b>, 784\u2013794 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Das, S., Gajula, V. P., Mohapatra, S., Singh, G. & Kar, S. Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sci. Rev.<\/i> 4<\/b>, 100037 (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dobrynin, D., Fridman, G., Friedman, G. & Fridman, A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys.<\/i> 11<\/b>, 115020 (2009).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Davies, B. W. et al.<\/i> Dna damage and reactive nitrogen species are barriers to Vibrio<\/i> cholerae<\/i> colonization of the infant mouse intestine. PLOS Pathog.<\/i> 7<\/b>, e1001295 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Joshi, S. G. et al.<\/i> Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia<\/i> coli<\/i>. Antimicrob. Agents Chem.<\/i> 55<\/b>, 1053\u20131062 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Han, L. et al.<\/i> Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli<\/i> and Staphylococcus<\/i> aureus<\/i>. Appl. Environ. Microb.<\/i> 82<\/b>, 450\u2013458 (2016).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Los, A., Ziuzina, D., Boehm, D., Cullen, P. J. & Bourke, P. Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus<\/i> flavus<\/i> spores and biofilms: A comparative study. Appl. Environ. Microb.<\/i> 86<\/b>, e02619-e2719 (2020).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Phan, K. T. K. et al.<\/i> Gliding arc discharge non-thermal plasma for retardation of mango anthracnose. LWT<\/i> 105<\/b>, 142\u2013148 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    L\u00f3pez, M. et al.<\/i> A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front. Microb.<\/i> 10<\/b>, 4 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, Z. et al.<\/i> Inactivation of Alicyclobacillus<\/i> contaminans<\/i> in apple juice by dielectric barrier discharge plasma. Food Control<\/i> 146<\/b>, 109475 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liao, X. et al.<\/i> Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control<\/i> 75<\/b>, 83\u201391 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Puligundla, P. & Mok, C. Inactivation of spores by nonthermal plasmas. World J. Microbiol. Biotechnol.<\/i> 34<\/b>, 143 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lin, L. et al.<\/i> Plasma activated Ezhangfeng<\/i> cuji<\/i> as innovative antifungal agent and its inactivation mechanism. AMB Expr.<\/i> 13<\/b>, 65 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Weitz, H. J., Ballard, A. L., Campbell, C. D. & Killham, K. The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microb. Lett.<\/i> 202<\/b>, 165\u2013170 (2001).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Veerana, M., Lim, J.-S., Choi, E.-H. & Park, G. Aspergillus oryzae<\/i> spore germination is enhanced by non-thermal atmospheric pressure plasma. Sci. Rep.<\/i> 9<\/b>, 11184 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kaftanoglu, O., Linksvayer, T. A. & Page, R. E. Rearing honeybees, Apis<\/i> mellifera<\/i>, in vitro I: Effects of sugar concentrations on survival and development. J. Insect Sci.<\/i> 19<\/b>, 96 (2011).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zygaflo, J., Guzman, C. & Grosso, N. Antifungal properties of the leaf oils of Tagets<\/i> minuta<\/i> L. and T<\/i>. fifolia<\/i> lag. J. Essent. Oil Res.<\/i> 6<\/b>, 617\u2013621 (1994).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ebadzadsahrai, G., Keppler, E. A. H., Soby, S. D. & Bean, H. D. Inhibition of fungal growth and induction od a novel volatilome in response to Chromobacterium<\/i> vaccinii<\/i> volatile organic compounds. Front. Microb.<\/i> 11<\/b>, 1035 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n