{"id":489075,"date":"2024-01-17T19:00:00","date_gmt":"2024-01-18T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/single-cell-multi-omics-profiling-of-human-preimplantation-embryos-identifies-cytoskeletal-defects-during-embryonic-arrest-nature-cell-biology\/"},"modified":"2024-01-18T06:57:29","modified_gmt":"2024-01-18T11:57:29","slug":"single-cell-multi-omics-profiling-of-human-preimplantation-embryos-identifies-cytoskeletal-defects-during-embryonic-arrest-nature-cell-biology","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/single-cell-multi-omics-profiling-of-human-preimplantation-embryos-identifies-cytoskeletal-defects-during-embryonic-arrest-nature-cell-biology\/","title":{"rendered":"Single-cell multi-omics profiling of human preimplantation embryos identifies cytoskeletal defects during embryonic arrest – Nature Cell Biology","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Keiding, N. et al. The use of time to pregnancy for estimating and monitoring human fecundity from demographic and health surveys. Epidemiology<\/i> 32<\/b>, 27 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, L., Cai, J., Chen, P., Sha, A. & Ren, J. Clinical outcome of IVF\/ICSI cycles with an arrested embryo on day 3. Int. J. Clin. Exp. Med.<\/i> 9<\/b>, 16414\u201316424 (2016).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development<\/i> 146<\/b>, dev161471 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sha, Q.-Q. et al. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat. Commun.<\/i> 11<\/b>, 4917 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hernandez Mora, J. R. et al. Single-cell multi-omic analysis profiles defective genome activation and epigenetic reprogramming associated with human pre-implantation embryo arrest. Cell Rep.<\/i> 42<\/b>, 112100 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Favetta, L. A., St John, E. J., King, W. A. & Betts, D. H. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic. Biol. Med.<\/i> 42<\/b>, 1201\u20131210 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, Y. et al. Metabolic and epigenetic dysfunctions underlie the arrest of in vitro fertilized human embryos in a senescent-like state. PLoS Biol.<\/i> 20<\/b>, e3001682 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, B. et al. Novel mutations and structural deletions in TUBB8<\/i>: expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Hum. Reprod.<\/i> 32<\/b>, 457\u2013464 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, H. et al. Dominant mutations in CHK1<\/i> cause pronuclear fusion failure and zygote arrest that can be rescued by CHK1 inhibitor. Cell Res.<\/i> 31<\/b>, 814\u2013817 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, W. et al. FBXO43 variants in patients with female infertility characterized by early embryonic arrest. Hum. Reprod.<\/i> 36<\/b>, 2392\u20132402 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, L. et al. Chromatin accessibility landscape in human early embryos and its association with evolution. Cell<\/i> 173<\/b>, 248\u2013259.e15 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature<\/i> 557<\/b>, 256\u2013260 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science<\/i> 365<\/b>, 353\u2013360 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, L. et al. Single-cell multi-omics sequencing of human early embryos. Nat. Cell Biol.<\/i> 20<\/b>, 847\u2013858 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Snider, A. C. et al. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biol. Open<\/i> 2<\/b>, 121\u2013131 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Arand, J., Reijo Pera, R. A. & Wossidlo, M. Reprogramming of DNA methylation is linked to successful human preimplantation development. Histochem. Cell Biol.<\/i> 156<\/b>, 197\u2013207 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, J. et al. Single-cell multiomics sequencing reveals the reprogramming defects in embryos generated by round spermatid injection. Sci. Adv.<\/i> 8<\/b>, eabm3976 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, Y. et al. Single-cell multi-omics sequencing of human spermatogenesis reveals a DNA demethylation event associated with male meiotic recombination. Nat. Cell Biol.<\/i> 25<\/b>, 1520\u20131534 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol.<\/i> 20<\/b>, 1131\u20131139 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Leng, L. et al. Single-cell transcriptome analysis of uniparental embryos reveals parent-of-origin effects on human preimplantation development. Cell Stem Cell<\/i> 25<\/b>, 697\u2013712.e6 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Djekidel, M. N. et al. Reprogramming of chromatin accessibility in somatic cell nuclear transfer is DNA replication independent. Cell Rep.<\/i> 23<\/b>, 1939\u20131947 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, X. et al. Key role for CTCF in establishing chromatin structure in human embryos. Nature<\/i> 576<\/b>, 306\u2013310 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, L. et al. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat. Commun.<\/i> 10<\/b>, 364 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, H. et al. The DNA methylation landscape of human early embryos. Nature<\/i> 511<\/b>, 606\u2013610 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bu, G. et al. Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos. Genome Res.<\/i> 32<\/b>, 1487\u20131501 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature<\/i> 537<\/b>, 548\u2013552 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet.<\/i> 20<\/b>, 207\u2013220 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bevilacqua, A., Fiorenza, M. T. & Mangia, F. A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1<\/i> gene at the onset of mouse zygotic genome activation. Development<\/i> 127<\/b>, 1541\u20131551 (2000).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gassler, J. et al. Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science<\/i> 378<\/b>, 1305\u20131315 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zou, Z. et al. Translatome and transcriptome co-profiling reveals a role of TPRXs in human zygotic genome activation. Science<\/i> 378<\/b>, abo7923 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yuan, S. et al. Human zygotic genome activation is initiated from paternal genome. Cell Discov.<\/i> 9<\/b>, 13 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gertz, J. et al. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol. Cell<\/i> 52<\/b>, 25\u201336 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell<\/i> 24<\/b>, 724\u2013735.e5 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schmitges, F. W. et al. Multiparameter functional diversity of human C2H2 zinc finger proteins. Genome Res.<\/i> 26<\/b>, 1742\u20131752 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, P., Frederick, M. I. & Heinemann, I. U. Terminal uridylyltransferases TUT4\/7 regulate microRNA and mRNA homeostasis. Cells<\/i> 11<\/b>, 3742 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nikonova, A. S., Astsaturov, I., Serebriiskii, I. G., Dunbrack, R. L. Jr & Golemis, E. A. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci.<\/i> 70<\/b>, 661\u2013687 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ding, J., Swain, J. E. & Smith, G. D. Aurora kinase\u2010A regulates microtubule organizing center (MTOC) localization, chromosome dynamics, and histone\u2010H3 phosphorylation in mouse oocytes. Mol. Reprod. Dev.<\/i> 78<\/b>, 80\u201390 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, X., Baumann, C., De La Fuente, R. & Viveiros, M. M. CEP215 and AURKA regulate spindle pole focusing and aMTOC organization in mouse oocytes. Reproduction<\/i> 159<\/b>, 261\u2013274 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kovarikova, V. et al. Aurora kinase A is essential for correct chromosome segregation in mouse zygote. Zygote<\/i> 24<\/b>, 326\u2013337 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guo, M. et al. Precise temporal regulation of Dux is important for embryo development. Cell Res.<\/i> 29<\/b>, 956\u2013959 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nguyen, T. T. T. et al. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proc. Natl Acad. Sci. USA<\/i> 113<\/b>, 10091\u201310096 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kosla, J., Dvorak, M. & Cermak, V. Molecular analysis of the TGF-\u03b2 controlled gene expression program in chicken embryo dermal myofibroblasts. Gene<\/i> 513<\/b>, 90\u2013100 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, B. et al. Acyl\u2010CoA thioesterase 9 promotes tumour growth and metastasis through reprogramming of fatty acid metabolism in hepatocellular carcinoma. Liver Int.<\/i> 42<\/b>, 2548\u20132561 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Toyo-oka, K. et al. Loss of the Max-interacting protein Mnt in mice results in decreased viability, defective embryonic growth and craniofacial defects: relevance to Miller\u2013Dieker syndrome. Hum. Mol. Genet.<\/i> 13<\/b>, 1057\u20131067 (2004).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yanagisawa, H., Schluterman, M. K. & Brekken, R. A. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J. Cell Commun. Signal.<\/i> 3<\/b>, 337\u2013347 (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kuht, H. J. et al. SLC38A8<\/i> mutations result in arrested retinal development with loss of cone photoreceptor specialization. Hum. Mol. Genet.<\/i> 29<\/b>, 2989\u20133002 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tong, H. et al. Transcriptomic analysis of gene expression profiles of stomach carcinoma reveal abnormal expression of mitotic components. Life Sci.<\/i> 170<\/b>, 41\u201349 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, Y. et al. iTALK: an R package to characterize and illustrate intercellular communication. Preprint at bioRxiv<\/i> https:\/\/doi.org\/10.1101\/507871<\/a> (2019).<\/p>\n<\/li>\n

  • \n

    Jalalirad, M. et al. Aurora-A kinase oncogenic signaling mediates TGF-\u03b2-induced triple-negative breast cancer plasticity and chemoresistance. Oncogene<\/i> 40<\/b>, 2509\u20132523 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Connell, M. et al. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. eLife<\/i> 6<\/b>, e28672 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pujana, M. A. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat. Genet.<\/i> 39<\/b>, 1338\u20131349 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Younger, S. T. & Rinn, J. L. p53 regulates enhancer accessibility and activity in response to DNA damage. Nucleic Acids Res.<\/i> 45<\/b>, 9889\u20139900 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Toiber, D. et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell<\/i> 51<\/b>, 454\u2013468 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mantikou, E., Wong, K. M., Repping, S. & Mastenbroek, S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim. Biophys. Acta<\/i> 1822<\/b>, 1921\u20131930 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vera-Rodriguez, M., Chavez, S. L., Rubio, C., Pera, R. A. R. & Simon, C. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat. Commun.<\/i> 6<\/b>, 7601 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science<\/i> 333<\/b>, 1895\u20131898 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sheltzer, J. M. et al. Aneuploidy drives genomic instability in yeast. Science<\/i> 333<\/b>, 1026\u20131030 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Qi, S.-T., Liang, L.-F., Xian, Y.-X., Liu, J.-Q. & Wang, W. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age. J. Ovarian Res.<\/i> 7<\/b>, 65 (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maurer, M. et al. Chromosomal aneuploidies and early embryonic developmental arrest. Int. J. Fertil. Steril.<\/i> 9<\/b>, 346\u2013353 (2015).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell<\/i> 162<\/b>, 540\u2013551 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nguyen, T. T. T. et al. Aurora kinase A inhibition reverses the Warburg effect and elicits unique metabolic vulnerabilities in glioblastoma. Nat. Commun.<\/i> 12<\/b>, 5203 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Milazzotto, M. P., Noonan, M. J. & Ferraz, M. D. A. M. M. Mining RNAseq data reveals dynamic metaboloepigenetic profiles in human, mouse and bovine pre-implantation embryos. iScience<\/i> 25<\/b>, 103904 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhao, J. et al. Metabolic remodelling during early mouse embryo development. Nat. Metab.<\/i> 3<\/b>, 1372\u20131384 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Donohoe, M. E. et al. Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol. Cell. Biol.<\/i> 19<\/b>, 7237\u20137244 (1999).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ding, Y.-H. et al. Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells. Drug. Des. Devel. Ther.<\/i> 9<\/b>, 425\u2013464 (2015).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dong, J. et al. Single-cell RNA-seq analysis unveils a prevalent epithelial\/mesenchymal hybrid state during mouse organogenesis. Genome Biol.<\/i> 19<\/b>, 31 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Behringer, R., Gertsenstein, M., Nagy, K. V. & Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual<\/i> (Cold Spring Harbor Lab. Press, 2014).<\/p>\n<\/li>\n

  • \n

    Navarro Gonzalez, J. et al. The UCSC genome browser database: 2021 update. Nucleic Acids Res.<\/i> 49<\/b>, D1046\u2013D1057 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics<\/i> 29<\/b>, 15\u201321 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Anders, S., Pyl, P. T. & Huber, W. HTSeq\u2014a Python framework to work with high-throughput sequencing data. Bioinformatics<\/i> 31<\/b>, 166\u2013169 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Krueger, F. Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries.<\/i> http:\/\/www.bioinformatics.babraham.ac.uk\/projects\/trim_galore\/<\/a> (2012).<\/p>\n<\/li>\n

  • \n

    Guo, W. et al. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics<\/i> 14<\/b>, 774 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, H. et al. The sequence alignment\/map format and SAMtools. Bioinformatics<\/i> 25<\/b>, 2078\u20132079 (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ranjan, B. et al. DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data. Nat. Commun.<\/i> 12<\/b>, 5849 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics<\/i> 32<\/b>, 1241\u20131243 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    De Vries, A., Ripley, B. D. & de Vries, M. A. ggdendro: Create dendrograms and tree diagrams using ggplot2[J]. R package version 0.1-22 (2020).<\/p>\n<\/li>\n

  • \n

    Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics<\/i> 28<\/b>, 882\u2013883 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Park, S.-J., Shirahige, K., Ohsugi, M. & Nakai, K. DBTMEE: a database of transcriptome in mouse early embryos. Nucleic Acids Res.<\/i> 43<\/b>, D771\u2013D776 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Falcon, S., & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics<\/i> 23<\/b>, 257\u2013258 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun.<\/i> 10<\/b>, 1523 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wickham, H., Chang, W. & Wickham, M. H. ggplot2: create elegant data visualisations using the grammar of graphics.<\/i> R package version 3.3.5,1-189 (2016).<\/p>\n<\/li>\n

  • \n

    Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv<\/i> https:\/\/doi.org\/10.1101\/060012<\/a> (2021).<\/p>\n<\/li>\n

  • \n

    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics<\/i> 16<\/b>, 284\u2013287 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics<\/i> 27<\/b>, 1739\u20131740 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jin, Y., Tam, O. H., Paniagua, E. & Hammell, M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics<\/i> 31<\/b>, 3593\u20133599 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kumar, N., Mishra, B., Athar, M. & Mukhtar, S. Inference of gene regulatory network from single-cell transcriptomic data using pySCENIC. Methods Mol. Biol.<\/i> 2328<\/b>, 171\u2013182 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics<\/i> 35<\/b>, 2159\u20132161 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.<\/i> 13<\/b>, 2498\u20132504 (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize<\/i> implements and enhances circular visualization in R. Bioinformatics<\/i> 30<\/b>, 2811\u20132812 (2014).<\/p>\n<\/li>\n

  • \n

    Guo, F. et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res.<\/i> 27<\/b>, 967\u2013988 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lai, D. & Ha, G. HMMcopy: a package for bias-free copy number estimation and robust CNA detection in tumour samples from WGS HTS data. R package version 1.30.0 (2013).<\/p>\n<\/li>\n

  • \n

    Kuhn, R. M., Haussler, D. & Kent, W. J. The UCSC genome browser and associated tools. Brief. Bioinform.<\/i> 14<\/b>, 144\u2013161 (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics<\/i> 26<\/b>, 841\u2013842 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ram\u00edrez, F., D\u00fcndar, F., Diehl, S., Gr\u00fcning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res.<\/i> 42<\/b>, W187\u2013W191 (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods\u2014a bioconductor package providing PCA methods for incomplete data. Bioinformatics<\/i> 23<\/b>, 1164\u20131167 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics<\/i> 19<\/b>, 477 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Danese, A. et al. EpiScanpy: integrated single-cell epigenomic analysis. Nat. Commun.<\/i> 12<\/b>, 5228 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    McLeay, R. C. & Bailey, T. L. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics<\/i> 11<\/b>, 165 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Madsen, J. G. S. et al. Integrated analysis of motif activity and gene expression changes of transcription factors. Genome Res.<\/i> 28<\/b>, 243\u2013255 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature<\/i> 534<\/b>, 652\u2013657 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics<\/i> 32<\/b>, 2847\u20132849 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wybrow, M., Rodgers, P. & Dib, F. K. Euler diagrams drawn with ellipses area-proportionally (Edeap). BMC Bioinformatics<\/i> 22<\/b>, 214 (2021).<\/p>\n<\/li>\n

  • \n

    Gao, Y. et al. 5-Formylcytosine landscapes of human preimplantation embryos at single-cell resolution. PLoS Biol.<\/i> 18<\/b>, e3000799 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhu, P. et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet.<\/i> 50<\/b>, 12\u201319 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell<\/i> 165<\/b>, 1012\u20131026 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n