{"id":488487,"date":"2024-01-16T19:00:00","date_gmt":"2024-01-17T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/age-related-noncanonical-trmt6-trmt61a-signaling-impairs-hematopoietic-stem-cells-nature-aging\/"},"modified":"2024-01-17T06:23:54","modified_gmt":"2024-01-17T11:23:54","slug":"age-related-noncanonical-trmt6-trmt61a-signaling-impairs-hematopoietic-stem-cells-nature-aging","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/age-related-noncanonical-trmt6-trmt61a-signaling-impairs-hematopoietic-stem-cells-nature-aging\/","title":{"rendered":"Age-related noncanonical TRMT6\u2013TRMT61A signaling impairs hematopoietic stem cells – Nature Aging","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature<\/i> 571<\/b>, 183\u2013192 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    He, H. et al. Aging-induced IL27Ra signaling impairs hematopoietic stem cells. Blood<\/i> 136<\/b>, 183\u2013198 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, J. et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell<\/i> 148<\/b>, 1001\u20131014 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA<\/i> 107<\/b>, 5465\u20135470 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med.<\/i> 208<\/b>, 2691\u20132703 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ermolaeva, M., Neri, F., Ori, A. & Rudolph, K. L. Cellular and epigenetic drivers of stem cell ageing. Nat. Rev. Mol. Cell Biol.<\/i> 19<\/b>, 594\u2013610 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    de Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. Blood<\/i> 131<\/b>, 479\u2013487 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Delaunay, S. & Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol.<\/i> 21<\/b>, 552\u2013559 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guzzi, N. et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell<\/i> 173<\/b>, 1204\u20131216 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yao, Q. J. et al. Mettl3\u2013Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res.<\/i> 28<\/b>, 952\u2013954 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cheng, Y. et al. m6<\/sup>A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep.<\/i> 28<\/b>, 1703\u20131716 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, H. et al. Stage-specific requirement for Mettl3-dependent m6<\/sup>A mRNA methylation during haematopoietic stem cell differentiation. Nat. Cell Biol.<\/i> 21<\/b>, 700\u2013709 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, X., Xiong, X. & Yi, C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods<\/i> 14<\/b>, 23\u201331 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dominissini, D. et al. The dynamic N<\/i>1<\/sup>-methyladenosine methylome in eukaryotic messenger RNA. Nature<\/i> 530<\/b>, 441\u2013446 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N<\/i>1<\/sup>-methyladenosine methylome. Nat. Chem. Biol.<\/i> 12<\/b>, 311\u2013316 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, X. et al. Base-resolution mapping reveals distinct m1<\/sup>A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell<\/i> 68<\/b>, 993\u20131005 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhou, H. et al. Evolution of a reverse transcriptase to map N<\/i>1<\/sup>-methyladenosine in human messenger RNA. Nat. Methods<\/i> 16<\/b>, 1281\u20131288 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xiong, X., Li, X. & Yi, C. N<\/i>1<\/sup>-methyladenosine methylome in messenger RNA and non-coding RNA. Curr. Opin. Chem. Biol.<\/i> 45<\/b>, 179\u2013186 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ozanick, S., Krecic, A., Andersland, J. & Anderson, J. T. The bipartite structure of the tRNA m1<\/sup>A58 methyltransferase from S. cerevisiae<\/i> is conserved in humans. RNA<\/i> 11<\/b>, 1281\u20131290 (2005).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Safra, M. et al. The m1<\/sup>A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature<\/i> 551<\/b>, 251\u2013255 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Finer-Moore, J., Czudnochowski, N., O\u2019Connell, J. D., Wang, A. L. & Stroud, R. M. Crystal structure of the human tRNA m1A58 methyltransferase\u2013tRNA3Lys complex: refolding of substrate tRNA allows access to the methylation target. J. Mol. Biol.<\/i> 427<\/b>, 3862\u20133876 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Su, Z., Wilson, B., Kumar, P. & Dutta, A. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet.<\/i> 54<\/b>, 47\u201369 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell<\/i> 148<\/b>, 213\u2013227 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev.<\/i> 32<\/b>, 327\u2013340 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gonzalez-Juarbe, N. et al. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathog.<\/i> https:\/\/doi.org\/10.1371\/journal.ppat.1005337<\/a> (2015).<\/p>\n<\/li>\n

  • \n

    Mocarski, E. S., Guo, H. Y. & Kaiser, W. J. Necroptosis: the Trojan horse in cell autonomous antiviral host defense. Virology<\/i> 479<\/b>, 160\u2013166 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Caccamo, A. et al. Necroptosis activation in Alzheimer\u2019s disease. Nat. Neurosci.<\/i> 20<\/b>, 1236\u20131246 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science<\/i> 353<\/b>, 603\u2013608 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, T. et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat. Med.<\/i> 22<\/b>, 175\u2013182 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Strilic, B. et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature<\/i> 536<\/b>, 215\u2013218 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, D. et al. RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. eLife<\/i> 6<\/b>, e27692 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yamashita, M. & Passegu\u00e9, E. TNF-\u03b1 coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell<\/i> 25<\/b>, 357\u2013372 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, X. et al. YTHDF3 modulates hematopoietic stem cells by recognizing RNA m6<\/sup>A modification on Ccnd1<\/i>. Haematologica<\/i> 107<\/b>, 2381\u20132394 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Git, A. et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA<\/i> 16<\/b>, 991\u20131006 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mestdagh, P. et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods<\/i> 11<\/b>, 809\u2013815 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bertheloot, D., Latz, E. & Franklin, B. S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cellular Mol. Immunol.<\/i> 18<\/b>, 1106\u20131121 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature<\/i> 575<\/b>, 683\u2013687 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell<\/i> 137<\/b>, 1100\u20131111 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ren, Y. et al. Discovery of a highly potent, selective, and metabolically stable inhibitor of receptor-interacting protein 1 (RIP1) for the treatment of systemic inflammatory response syndrome. J. Med. Chem.<\/i> 60<\/b>, 972\u2013986 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Caserta, T. M., Smith, A. N., Gultice, A. D., Reedy, M. A. & Brown, T. L. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis<\/i> 8<\/b>, 345\u2013352 (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, M., Li, H., Yang, R., Ji, D. & Xia, X. GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1\/RIP3\/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J. Neuroinflammation<\/i> 19<\/b>, 262 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Liu, Y. et al. RIP1 kinase activity-dependent roles in embryonic development of Fadd-deficient mice. Cell Death Differ.<\/i> 24<\/b>, 1459\u20131469 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Li, D. et al. RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. eLife<\/i> https:\/\/doi.org\/10.7554\/eLife.27692<\/a> (2017).<\/p>\n<\/li>\n

  • \n

    Zhang, L. et al. Ripk3 signaling regulates HSCs during stress and represses radiation-induced leukemia in mice. Stem Cell Rep.<\/i> 17<\/b>, 1428\u20131441 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Newton, K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol.<\/i> 25<\/b>, 347\u2013353 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Platt, R. J. et al. CRISPR\u2013Cas9 knockin mice for genome editing and cancer modeling. Cell<\/i> 159<\/b>, 440\u2013455 (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jackson, S. & Xiong, Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem. Sci.<\/i> 34<\/b>, 562\u2013570 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pietras, E. M. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood<\/i> 130<\/b>, 1693\u20131698 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Higa, K. C. et al. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J. Exp. Med.<\/i> https:\/\/doi.org\/10.1084\/jem.20200560<\/a> (2021).<\/p>\n<\/li>\n

  • \n

    Frank, D. & Vince, J. E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Diff.<\/i> 26<\/b>, 99\u2013114 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yang, X., Cong, T., He, H. & Wang, J. GSDME maintains hematopoietic stem cells by balancing pyroptosis and apoptosis. Blood Sci.<\/i> 3<\/b>, 40\u201347 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature<\/i> 577<\/b>, 109\u2013114 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, R. et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature<\/i> 580<\/b>, 386\u2013390 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature<\/i> 580<\/b>, 391\u2013395 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Becker, F. & Rudolph, K. L. Targeting enzyme aging. Science<\/i> 371<\/b>, 462\u2013463 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yamasaki, S., Ivanov, P., Hu, G.-F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol.<\/i> 185<\/b>, 35\u201342 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Goncalves, K. A. et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell<\/i> 166<\/b>, 894\u2013906 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Silberstein, L. et al. Proximity-based differential single-cell analysis of the niche to identify stem\/progenitor cell regulators. Cell Stem Cell<\/i> 19<\/b>, 530\u2013543 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schimmel, P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol.<\/i> 19<\/b>, 45\u201358 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kim, H. K. et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature<\/i> 552<\/b>, 57\u201362 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gao, J. et al. The CUL4\u2013DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. eLife<\/i> https:\/\/doi.org\/10.7554\/eLife.07539<\/a> (2015).<\/p>\n<\/li>\n

  • \n

    Guo, Z. et al. DCAF1 regulates Treg<\/sub> senescence via the ROS axis during immunological aging. J. Clin. Invest.<\/i> 130<\/b>, 5893\u20135908 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R Package for comparing biological themes among gene clusters. OMICS<\/i> 16<\/b>, 284\u2013287 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chen, T. et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res.<\/i> 50<\/b>, D1522\u2013D1527 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n