{"id":477908,"date":"2024-01-04T19:00:00","date_gmt":"2024-01-05T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/organoids-in-endocrine-and-metabolic-research-current-and-emerging-applications-nature-reviews-endocrinology\/"},"modified":"2024-01-06T01:22:42","modified_gmt":"2024-01-06T06:22:42","slug":"organoids-in-endocrine-and-metabolic-research-current-and-emerging-applications-nature-reviews-endocrinology","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/organoids-in-endocrine-and-metabolic-research-current-and-emerging-applications-nature-reviews-endocrinology\/","title":{"rendered":"Organoids in endocrine and metabolic research: current and emerging applications – Nature Reviews Endocrinology","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
  • \n

    Rajamani, U. et al. Super-obese patient-derived iPSC hypothalamic neurons exhibit obesogenic signatures and hormone responses. Cell Stem Cell<\/i> 22<\/b>, 698\u2013712 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Matsumoto, R. et al. Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. J. Clin. Invest.<\/i> 130<\/b>, 641\u2013654 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Laporte, E. et al. Decoding the activated stem cell phenotype of the neonatally maturing pituitary. eLife<\/i> 11<\/b>, e75742 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vennekens, A. et al. Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proc. Natl Acad. Sci. USA<\/i> 118<\/b>, e2100052118 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bakooshli, M. A. et al. A 3d culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. eLife<\/i> 8<\/b>, e44530 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Faustino Martins, J. M. et al. Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell<\/i> 26<\/b>, 172\u2013186 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sylow, L., Tokarz, V. L., Richter, E. A. & Klip, A. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab.<\/i> 33<\/b>, 758\u2013780 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Buss, D. J. et al. Hierarchical organization of bone in three dimensions: a twist of twists. J. Struct. Biol. X<\/i> 6<\/b>, 100057 (2022).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Akiva, A. et al. An organoid for woven bone. Adv. Funct. Mater.<\/i> 31<\/b>, 2010524 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    de Wildt, B. W. M. et al. Bioinspired silk fibroin mineralization for advanced in vitro bone remodeling models. Adv. Funct. Mater.<\/i> 32<\/b>, 2206992 (2022).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Krishnamurthy, M. et al. Using human induced pluripotent stem cell-derived organoids to identify new pathologies in patients with PDX1 mutations. Gastroenterology<\/i> 163<\/b>, 1053\u20131063 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Huang, W.-K. et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell<\/i> 28<\/b>, 1657\u20131670 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Miwata, T. et al. Generation of hypothalamic neural stem cell-like cells in vitro from human pluripotent stem cells. Stem Cell Rep.<\/i> 18<\/b>, 869\u2013883 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nys, C. et al. Exploring stem cell biology in pituitary tumors and derived organoids. Endocr. Relat. Cancer<\/i> 29<\/b>, 427\u2013450 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Chakrabarti, J. et al. Development of human pituitary neuroendocrine tumor organoids to facilitate effective targeted treatments of Cushings disease. Cells<\/i> 11<\/b>, 3344 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fern\u00e1ndez-Costa, J. M. et al. Training-on-a-chip: a multi-organ device to study the effect of muscle exercise on insulin secretion in vitro. Adv. Mater. Technol.<\/i> 8<\/b>, 2200873 (2023).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vis, M. A. M., de Wildt, B. W. M., Ito, K. & Hofmann, S. A dialysis medium refreshment cell culture set-up for an osteoblast-osteoclast coculture. Biotech. Bioeng.<\/i> 120<\/b>, 1120\u20131132 (2023).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Eicher, A. K. et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell<\/i> 29<\/b>, 36\u201351 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Workman, M. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med.<\/i> 23<\/b>, 49\u201359 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    M\u00fanera, J. O. et al. Development of functional resident macrophages in human pluripotent stem cell-derived colonic organoids and human fetal colon. Cell Stem Cell<\/i> 30<\/b>, 1434\u20131451 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kasai, T. et al. Hypothalamic contribution to pituitary functions is recapitulated in vitro using 3D-cultured human iPS cells. Cell Rep.<\/i> 30<\/b>, 18\u201324 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Molendijk, J. et al. Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function. eLife<\/i> 11<\/b>, e82951 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    McCauley, H. A., Matthis, A. L. & Enriquez, J. R. et al. Enteroendocrine cells couple nutrient sensing to nutrient absorption by regulating ion transport. Nat. Commun.<\/i> 11<\/b>, 4791 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Melton, D. The promise of stem cell-derived islet replacement therapy. Diabetologia<\/i> 64<\/b>, 1030\u20131036 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n