{"id":443661,"date":"2024-01-02T19:00:00","date_gmt":"2024-01-03T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/suspension-culture-of-stem-cells-established-of-calendula-officinalis-l-scientific-reports\/"},"modified":"2024-01-03T14:26:40","modified_gmt":"2024-01-03T19:26:40","slug":"suspension-culture-of-stem-cells-established-of-calendula-officinalis-l-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/suspension-culture-of-stem-cells-established-of-calendula-officinalis-l-scientific-reports\/","title":{"rendered":"Suspension culture of stem cells established of Calendula officinalis L. – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Ashwlayan, V. D., Kumar, A., Verma, M., Garg, V. K. & Gupta, S. K. Therapeutic potential of Calendula officinalis<\/i>. Pharm. Pharmacol. Int. J.<\/i> 6<\/b>(2), 149\u2013155 (2018).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jan, N., Andrabi, K. I. & John, R. Calenula officinalis<\/i>\u2014an important medicinal plant with potential biological properties. Proc. Indian Natl. Sci. Acad.<\/i> 83<\/b>(4), 769\u2013787 (2017).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Xuan, S. H. et al.<\/i> Antioxidant and cellular protective effects against oxidative stress of Calendula officinalis<\/i> flowers extracts in human skin cells. Appl. Chem. Eng.<\/i> 27<\/b>(6), 620\u2013626 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Akhtar, N., Zaman, S. U., Khan, B. A., Amir, M. N. & Ebrahimzadeh, M. A. Calendula extract: Effects on mechanical parameters of human skin. Acta Pol. Pharm.<\/i> 68<\/b>(5), 603\u2013701 (2011).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Szopa, A., Klimek-Szczykutowicz, M., Jafernik, K., Koc, K. & Ekiert, H. Pot marigold (Calendula officinalis<\/i> L.)\u2014a position in classical phytotherapy and newly documented activities. Acta Sci. Pol. Hortorum Cultus<\/i> 19<\/b>(3), 47\u201361 (2020).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Andersen, F. A. et al.<\/i> Final report of the Cosmetic Ingredient Review expert panel amended safety assessment of Calendula officinalis<\/i>-derived cosmetic ingredients. Int. J. Toxicol.<\/i> 29<\/b>(6 Suppl), 221S-S243 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Georgiev, V., Slavov, A., Vasileva, I. & Pavlov, A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci.<\/i> 18<\/b>(11), 779\u2013798 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    \u00c7\u00f6\u00e7\u00fc, S. et al.<\/i> Adventitious shoot regeneration and micropropagation in Calendula officinalis<\/i> L.. Biol. Plant.<\/i> 48<\/b>(3), 449\u2013451 (2004).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wiktorowska, E., Dlugosz, M. & Janiszowska, W. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis<\/i> L.. Enzyme Microb. Technol.<\/i> 46<\/b>(1), 14\u201320 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    D\u0142ugosz, M., Wiktorowska, E., Wi\u015bniewska, A. & P\u0105czkowski, C. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis<\/i> L.. Acta Biochim. Pol.<\/i> 60<\/b>(3), 467\u2013473 (2013).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    \u00c7etin, B., Kalyoncu, F. & Kurtulu\u015f, B. Antibacterial activities of Calendula officinalis<\/i> callus extract. Int. J. Sec. Metab.<\/i> 4<\/b>(3), 257\u2013263 (2017).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Grzelak, A. & Janiszowska, W. Initiation and growth characteristics of suspension cultures of Calendula officinalis<\/i> cells. Plant Cell Tissue Organ. Cult.<\/i> 71<\/b>, 29\u201340 (2002).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Augu\u015bci\u0144ska, E. & Kasprzyk, Z. Studies on the labelling of terpenoids in shoots and cells or protoplasts from Calendula officinalis<\/i> leaves. Acta Biochim. Pol.<\/i> 29<\/b>(1\u20132), 7\u201313 (1982).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    D\u0142ugosz, M., Markowski, M. & P\u0105czkowski, C. Source of nitrogen as a factor limiting saponin production by hairy root and suspension cultures of Calendula officinalis<\/i> L.. Acta Physiol. Plant.<\/i> 40<\/b>, 35 (2018).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alsoufi, A. S. M., P\u0105czkowski, C., Szakiel, A. & D\u0142ugosz, M. Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis<\/i> hairy root cultures. Phytochem. Lett.<\/i> 31<\/b>, 5\u201311 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rogowska, A., Paczkowski, C. & Szakiel, A. Modulation of steroid and triterpenoid metabolism in Calendula officinalis<\/i> plants and hairy root cultures exposed to cadmium stress. Int. J. Mol. Sci.<\/i> 23<\/b>(10), 5640 (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mehrabi, A. A., Khodadadi, E., Sadeghi, Z. & Shooshtari, L. An investigation of tissue culture and co-cultures of different explants in Calendula officinalis<\/i>. Int. J. Biosci.<\/i> 3<\/b>(12), 201\u2013205 (2013).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kaya, N. & Aki, C. In vitro effects of plant growth regulators on callus formation in Calendula officinalis<\/i> L. and Calendula arvensis<\/i> L. species. Ann. Biol. Res.<\/i> 8<\/b>(1), 1\u20137 (2017).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Al-Abasi, I. N., Bashi, B. Z. K. & Al-Mallah, M. K. Design of culture medium and leaf clones are determinant factors in callus induction of Calendula officinalis<\/i> L.. Eur. Acad. Res.<\/i> 6<\/b>(5), 1901\u20131913 (2018).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Efferth, T. Biotechnology applications of plant callus cultures. Engineering<\/i> 5<\/b>(1), 50\u201359 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kolewe, M. E., Gaurav, V. & Roberts, S. C. Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol. Pharm.<\/i> 5<\/b>(2), 243\u2013256 (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, E. K. et al.<\/i> Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol.<\/i> 28<\/b>(11), 1213\u20131217 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ochoa-Villarreal, M. et al.<\/i> Cambial meristematic cells: A platform for the production of plant natural products. New Biotechnol.<\/i> 32<\/b>(6), 581\u2013587 (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ye, Z. H. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol.<\/i> 53<\/b>, 183\u2013202 (2002).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Laux, T. The stem cell concept in plants: A matter of debate. Cell<\/i> 113<\/b>(2), 281\u2013283 (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yun, B. W. et al.<\/i> Plant natural products: History, limitations and the potential of cambial meristematic cells. Biotechnol. Genet. Eng. Rev.<\/i> 28<\/b>(1), 47\u201360 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Joshi, J. B., Elias, C. B. & Patole, M. S. Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem. Eng. J.<\/i> 62<\/b>(2), 121\u2013141 (1996).<\/p>\n

    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, S. B. et al.<\/i> Wild ginseng cambial meristematic cells ameliorate hepatic steatosis and mitochondrial dysfunction in high-fat diet-fed mice. J. Pharm. Pharmacol.<\/i> 68<\/b>(1), 119\u2013127 (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Moon, S. H., Venkatesh, J., Yu, J. W. & Park, S. W. Differential induction of meristematic stem cells of Catharanthus roseus<\/i> and their characterization. C R Biol.<\/i> 338<\/b>(11), 745\u2013756 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Song, Y. et al.<\/i> A novel strategy to enhance terpenoids production using cambial meristematic cells of Tripterygium wilfordii<\/i> Hook f.. Plant Methods<\/i> 15<\/b>, 129 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zhang, Y., Jiang, J., Qin, N., Zhang, Q. & Yan, C. Biotransformation of 4-methylcoumarins by cambial meristematic cells of Camptotheca acuminate<\/i>. RSC Adv.<\/i> 9<\/b>(17), 9449 (2019).<\/p>\n

    Article<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mehring, A. et al.<\/i> Establishment and triterpenoid production of Ocimum basilicum<\/i> cambial meristematic cells. Plant Cell Tissue Organ Cult.<\/i> 143<\/b>, 573\u2013581 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    He, L. et al.<\/i> Establishment of the technology of cambial meristematic cells (CMCs) culture from shoots and high expression of FmPHV<\/i> (PHAVOLUTA<\/i>) functions in identification and differentiation of CMCs and promoting the shoot regeneration by hypocotyl in Fraxinus mandshurica<\/i>. Plant Physiol. Biochem.<\/i> 160<\/b>, 352\u2013364 (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Partap, M., Warghat, A. R. & Kumar, S. Cambial meristematic cell culture: A sustainable technology towards in vitro specialized metabolites production. Crit. Rev. Biotechnol.<\/i> 43<\/b>(5), 734\u2013752 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Legha, M. R. et al.<\/i> Induction of carotenoid pigments in callus cultures of Calendula officinalis<\/i> L. in response to nitrogen and sucrose levels. In Vitro Cell Dev. Biol. Plant<\/i> 48<\/b>, 99\u2013106 (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Leal, F., et al<\/i>. In vitro multiplication of Calendula arvensis<\/i> for secondary metabolites extraction. In Proceedings of the IIIrd International Symposium on Acclimatization and Establishment of Micropropagated Plants, Faro, Portugal<\/i>, 28 February 2009.<\/p>\n<\/li>\n

  • \n

    Ibrahim, M. M., Abed, R. M. & Ali, F. Q. Influence of biotic elicitor Aspergillus niger<\/i> on salicylic acid products in callus cultures of Calendula officinalis<\/i> L. plant. J. Phys. Conf. Ser.<\/i> 1294<\/b>, 062016 (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sugimoto, K., Gordon, S. P. & Meyerowitz, E. M. Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation?. Trends Cell Biol.<\/i> 21<\/b>(4), 212\u2013218 (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Grafi, G. How cells dedifferentiate: A lesson from plants. Dev. Biol.<\/i> 268<\/b>(1), 1\u20136 (2004).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Verdeil, J.-L., Alemanno, L., Niemenak, N. & Tranbarger, T. J. Pluripotent versus totipotent plant stem cells: Dependance versus autonomy?. Trends Plant Sci.<\/i> 12<\/b>(6), 245\u2013252 (2007).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell<\/i> 18<\/b>(3), 463\u2013471 (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Parizot, B. et al.<\/i> Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol.<\/i> 146<\/b>(1), 140\u2013148 (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ichihashi, Y. & Tsukaya, H. Behavior of leaf meristems and their modification. Front. Plant Sci.<\/i> 6<\/b>, 1060 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Donnelly, P. M., Bonetta, D., Tsukaya, H., Dengler, R. E. & Dengler, N. G. Cell cycling and cell enlargement in developing leaves of Arabidopsis<\/i>. Dev. Biol.<\/i> 215<\/b>(2), 407\u2013419 (1999).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maksymowych, R. & Erickson, R. O. Development of the lamina in Xanthium italicum<\/i> represented by the plastochron index. Am. J. Bot.<\/i> 47<\/b>(6), 451\u2013459 (1960).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alvarez, J. P., Furumizu, C., Efroni, E. Y. & Bowman, J. L. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife<\/i> 5<\/b>, e15023 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Du, F., Guan, C. & Jiao, Y. Molecular mechanisms of leaf morphogenesis. Mol. Plant<\/i> 11<\/b>(9), 1117\u20131134 (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Shin, J., Bae, S. & Seo, P. J. De novo shoot organogenesis during plant regeneration. J. Exp. Bot.<\/i> 71<\/b>(1), 63\u201372 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Atta, R. et al.<\/i> Pluripotency of Arabidopsis xylem<\/i> pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J.<\/i> 57<\/b>(4), 626\u201344 (2009).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hu, B. et al.<\/i> Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration<\/i> 4<\/b>(3), 132\u2013139 (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    M\u00fcller-Xing, R. & Xing, Q. The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective. Front. Plant Sci.<\/i> 13<\/b>, 1018559 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ikeuchi, M. et al.<\/i> Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol.<\/i> 70<\/b>, 3.1-3.30 (2019).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Maher, M. F. et al.<\/i> Plant gene editing through de novo induction of meristems. Nat. Biotechnol.<\/i> 38<\/b>(1), 84\u201389 (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant.<\/i> 15<\/b>(3), 473\u2013497 (1962).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n