{"id":402488,"date":"2023-12-17T19:00:00","date_gmt":"2023-12-18T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/fenofibrate-reduces-glucose-induced-barrier-dysfunction-in-feline-enteroids-scientific-reports\/"},"modified":"2023-12-28T14:31:12","modified_gmt":"2023-12-28T19:31:12","slug":"fenofibrate-reduces-glucose-induced-barrier-dysfunction-in-feline-enteroids-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/fenofibrate-reduces-glucose-induced-barrier-dysfunction-in-feline-enteroids-scientific-reports\/","title":{"rendered":"Fenofibrate reduces glucose-induced barrier dysfunction in feline enteroids – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Kaufman, F. R. Type 2 diabetes mellitus in children and youth: a new epidemic. J. Pediatr. Endocrinol. Metab.<\/i> 15<\/b>(Suppl 2), 737\u2013744 (2002).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hospital, B.P., State of Pet Health 2016 Report<\/i>, in State of Pet Health Report<\/i>. 2016, Banfield Pet Hospital.<\/p>\n<\/li>\n

  • \n

    Lederer, R. et al.<\/i> Frequency of feline diabetes mellitus and breed predisposition in domestic cats in Australia. Vet. J.<\/i> 179<\/b>(2), 254\u2013258 (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lutz, T. A. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat. Rev. Endocrinol.<\/i> 19<\/b>(6), 350\u2013360 (2023).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kol, A. et al.<\/i> Companion animals: Translational scientist\u2019s new best friends. Sci. Transl. Med.<\/i> 7<\/b>(308), 308ps21 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Meldgaard, T. et al.<\/i> Diabetic enteropathy: from molecule to mechanism-based treatment. J. Diabetes Res.<\/i> 2018<\/b>, 3827301 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Scott-Moncrieff, J. C. Insulin resistance in cats. Vet. Clin. North Am. Small Anim. Pract.<\/i> 40<\/b>(2), 241\u2013257 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Thaiss, C. A. et al.<\/i> Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science<\/i> 359<\/b>(6382), 1376\u20131383 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Barrett, K. E. New ways of thinking about (and teaching about) intestinal epithelial function. Adv. Physiol. Educ.<\/i> 32<\/b>(1), 25\u201334 (2008).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Vancamelbeke, M. & Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol.<\/i> 11<\/b>(9), 821\u2013834 (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Groschwitz, K. R. & Hogan, S. P. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol.<\/i> 124<\/b>(1), 3\u201320 (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Citi, S. et al.<\/i> Cingulin, a new peripheral component of tight junctions. Nature<\/i> 333<\/b>(6170), 272\u2013276 (1988).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Furuse, M. et al.<\/i> Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol.<\/i> 141<\/b>(7), 1539\u20131550 (1998).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Furuse, M. et al.<\/i> Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol.<\/i> 123<\/b>(6 Pt 2), 1777\u20131788 (1993).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Suzuki, T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J.<\/i> 91<\/b>(1), e13357 (2020).<\/p>\n

    Article<\/a> 
    \n
    MathSciNet<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kuitunen, M. et al.<\/i> Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity<\/i> 35<\/b>(5), 365\u2013368 (2002).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mooradian, A. D. et al.<\/i> Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia<\/i> 29<\/b>(4), 221\u2013224 (1986).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Amar, J. et al.<\/i> Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia<\/i> 54<\/b>(12), 3055\u20133061 (2011).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Damci, T. et al.<\/i> Increased intestinal permeability as a cause of fluctuating postprandial blood glucose levels in Type 1 diabetic patients. Eur. J. Clin. Invest.<\/i> 33<\/b>(5), 397\u2013401 (2003).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Selby, A. et al.<\/i> Pathophysiology, differential diagnosis, and treatment of diabetic Diarrhea. Dig. Dis. Sci.<\/i> 64<\/b>(12), 3385\u20133393 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Francis, K.L., et al.,<\/i> 1357-P: Diabetic Hyperglycemia impairs intestinal barrier function in the setting of diet-induced obesity. Diabetes<\/i> 71<\/b>(Supplement_1) (2022).<\/p>\n<\/li>\n

  • \n

    Do, M.H., et al.,<\/i> High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients<\/i> 10<\/b>(6) (2018).<\/p>\n<\/li>\n

  • \n

    Crakes, K. R. et al.<\/i> Fenofibrate promotes PPARalpha-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus. Sci. Rep.<\/i> 11<\/b>(1), 13454 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sidhu, G. & Tripp, J. Fenofibrate<\/i> (StatPearls Publishing, 2023).<\/p>\n


    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Emami, F. et al.<\/i> Fenofibrate-induced renal dysfunction, yes or no?. J. Res. Med. Sci.<\/i> 25<\/b>, 39 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Keating, G. M. & Croom, K. F. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs<\/i> 67<\/b>(1), 121\u2013153 (2007).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Knickelbein, J. E., Abbott, A. B. & Chew, E. Y. Fenofibrate and diabetic retinopathy. Curr. Diab. Rep.<\/i> 16<\/b>(10), 90 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tsunoda, F. et al.<\/i> Fenofibrate, HDL, and cardiovascular disease in Type-2 diabetes: The DAIS trial. Atherosclerosis<\/i> 247<\/b>, 35\u201339 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bajwa, P. J. et al.<\/i> Fenofibrate inhibits intestinal Cl- secretion by blocking basolateral KCNQ1 K+ channels. Am. J. Physiol. Gastrointest Liver Physiol.<\/i> 293<\/b>(6), G1288\u2013G1299 (2007).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Braissant, O. et al.<\/i> Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology<\/i> 137<\/b>(1), 354\u2013366 (1996).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bunger, M. et al.<\/i> Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol. Genom.<\/i> 30<\/b>(2), 192\u2013204 (2007).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kersten, S. Integrated physiology and systems biology of PPARalpha. Mol. Metab.<\/i> 3<\/b>(4), 354\u2013371 (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Azuma, Y. T. et al.<\/i> PPARalpha contributes to colonic protection in mice with DSS-induced colitis. Int. Immunopharmacol.<\/i> 10<\/b>(10), 1261\u20131267 (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Crakes, K. R. et al.<\/i> PPARalpha-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host-microbe intersection during SIV infection. Proc. Natl. Acad. Sci. USA<\/i> 116<\/b>(49), 24819\u201324829 (2019).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    de Vogel-van den Bosch, H. M. et al.<\/i> PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genom.<\/i> 9<\/b>, 231 (2008).<\/p>\n

    Article<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Zachos, N. C. et al.<\/i> Human Enteroids\/Colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem.<\/i> 291<\/b>(8), 3759\u20133766 (2016).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Crawford, C. K. et al.<\/i> Inflammatory cytokines directly disrupt the bovine intestinal epithelial barrier. Sci. Rep.<\/i> 12<\/b>(1), 14578 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tekes, G., et al.,<\/i> Development of feline ileum- and colon-derived organoids and their potential use to support feline coronavirus infection. Cells<\/i>. 9<\/b>(9) (2020).<\/p>\n<\/li>\n

  • \n

    Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc.<\/i> 8<\/b>(12), 2471\u20132482 (2013).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Powell, R. H. & Behnke, M. S. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biol. Open<\/i> 6<\/b>(5), 698\u2013705 (2017).<\/p>\n

    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schmidl, S. et al.<\/i> Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci. Rep.<\/i> 11<\/b>(1), 13751 (2021).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Grosheva, I. et al.<\/i> High-throughput screen identifies host and microbiota regulators of intestinal barrier function. Gastroenterology<\/i> 159<\/b>(5), 1807\u20131823 (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tokuda, S., Higashi, T. & Furuse, M. ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape. PLoS One<\/i> 9<\/b>(8), e104994 (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    El-Remessy, A. B. et al.<\/i> High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest. Ophthalmol. Vis. Sci.<\/i> 44<\/b>(7), 3135\u20133143 (2003).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Young, T. K., Lee, S. C. & Tai, L. N. Mannitol absorption and excretion in uremic patients regularly treated with gastrointestinal perfusion. Nephron<\/i> 25<\/b>(3), 112\u2013116 (1980).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mullin, J. M. et al.<\/i> Increased tight junction permeability can result from protein kinase C activation\/translocation and act as a tumor promotional event in epithelial cancers. Ann. N. Y. Acad. Sci.<\/i> 915<\/b>, 231\u2013236 (2000).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rosson, D. et al.<\/i> Protein kinase C-alpha activity modulates transepithelial permeability and cell junctions in the LLC-PK1 epithelial cell line. J. Biol. Chem.<\/i> 272<\/b>(23), 14950\u201314953 (1997).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ali, F. Y. et al.<\/i> Antiplatelet actions of statins and fibrates are mediated by PPARs. Arterioscler. Thromb. Vasc. Biol.<\/i> 29<\/b>(5), 706\u2013711 (2009).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Turner, J. R. et al.<\/i> Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am. J. Physiol.<\/i> 273<\/b>(4), C1378\u2013C1385 (1997).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Thorens, B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia<\/i> 58<\/b>(2), 221\u2013232 (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Filippello, A., et al.<\/i> High glucose exposure impairs l-cell differentiation in intestinal organoids: Molecular mechanisms and clinical implications. Int. J. Mol. Sci. 22<\/b>(13) (2021).<\/p>\n<\/li>\n

  • \n

    Forcheron, F. et al.<\/i> Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes<\/i> 51<\/b>(12), 3486\u20133491 (2002).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Serisier, S. et al.<\/i> Fenofibrate lowers lipid parameters in obese dogs. J. Nutr.<\/i> 136<\/b>(7 Suppl), 2037S-2040S (2006).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mazzon, E. & Cuzzocrea, S. Absence of functional peroxisome proliferator-activated receptor-alpha enhanced ileum permeability during experimental colitis. Shock<\/i> 28<\/b>(2), 192\u2013201 (2007).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Mazzon, E. & Cuzzocrea, S. Role of TNF-alpha in ileum tight junction alteration in mouse model of restraint stress. Am. J. Physiol. Gastrointest Liver Physiol.<\/i> 294<\/b>(5), G1268\u2013G1280 (2008).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Grabacka, M., et al.<\/i>, The role of PPAR alpha in the modulation of innate immunity. Int. J. Mol. Sci. 22<\/b>(19) (2021).<\/p>\n<\/li>\n

  • \n

    Wang, X. et al.<\/i> Fenofibrate ameliorated systemic and retinal inflammation and modulated gut microbiota in high-fat diet-induced mice. Front. Cell Infect. Microbiol.<\/i> 12<\/b>, 839592 (2022).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Unsworth, A. J., Flora, G. D. & Gibbins, J. M. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc. Res.<\/i> 114<\/b>(5), 645\u2013655 (2018).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nakashima, S. Protein kinase C alpha (PKC alpha): regulation and biological function. J. Biochem.<\/i> 132<\/b>(5), 669\u2013675 (2002).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Song, J. C., Rangachari, P. K. & Matthews, J. B. Opposing effects of PKCalpha and PKCepsilon on basolateral membrane dynamics in intestinal epithelia. Am. J. Physiol. Cell Physiol.<\/i> 283<\/b>(5), C1548\u2013C1556 (2002).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Koya, D. & King, G. L. Protein kinase C activation and the development of diabetic complications. Diabetes<\/i> 47<\/b>(6), 859\u2013866 (1998).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lee, T. S. et al.<\/i> Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc. Natl. Acad. Sci. USA<\/i> 86<\/b>(13), 5141\u20135145 (1989).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Alt, N. et al.<\/i> Day-to-day variability of blood glucose concentration curves generated at home in cats with diabetes mellitus. J. Am. Vet. Med. Assoc.<\/i> 230<\/b>(7), 1011\u20131017 (2007).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gottlieb, S. & Rand, J. Managing feline diabetes: current perspectives. Vet. Med. (Auckl)<\/i> 9<\/b>, 33\u201342 (2018).<\/p>\n

    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n