{"id":396293,"date":"2023-12-18T19:00:00","date_gmt":"2023-12-19T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/cell-cycle-dependent-activation-of-proneural-transcription-factor-expression-and-reactive-gliosis-in-rat-muller-glia-scientific-reports\/"},"modified":"2023-12-26T04:50:29","modified_gmt":"2023-12-26T09:50:29","slug":"cell-cycle-dependent-activation-of-proneural-transcription-factor-expression-and-reactive-gliosis-in-rat-muller-glia-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/cell-cycle-dependent-activation-of-proneural-transcription-factor-expression-and-reactive-gliosis-in-rat-muller-glia-scientific-reports\/","title":{"rendered":"Cell cycle-dependent activation of proneural transcription factor expression and reactive gliosis in rat M\u00fcller glia – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Lenkowski, J. R. & Raymond, P. A. M\u00fcller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog. Retin Eye Res.<\/i> 40<\/b>, 94\u2013123. https:\/\/doi.org\/10.1016\/j.preteyeres.2013.12.007<\/a> (2014).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bringmann, A. et al.<\/i> M\u00fcller cells in the healthy and diseased retina. Prog. Retin Eye Res.<\/i> 25<\/b>, 397\u2013424. https:\/\/doi.org\/10.1016\/j.preteyeres.2006.05.003<\/a> (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Karl, M. O. et al.<\/i> Stimulation of neural regeneration in the mouse retina. Proc. Natl. Acad. Sci. USA<\/i> 105<\/b>, 19508\u201319513. https:\/\/doi.org\/10.1073\/pnas.0807453105<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    L\u00f6ffler, K., Sch\u00e4fer, P., V\u00f6lkner, M., Holdt, T. & Karl, M. O. Age-dependent M\u00fcller glia neurogenic competence in the mouse retina. Glia<\/i> 63<\/b>, 1809\u20131824. https:\/\/doi.org\/10.1002\/glia.22846<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hamon, A. et al.<\/i> Linking YAP to M\u00fcller glia quiescence exit in the degenerative retina. Cell Rep.<\/i> 27<\/b>, 1712-1725 e1716. https:\/\/doi.org\/10.1016\/j.celrep.2019.04.045<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Rueda, E. M. et al.<\/i> The Hippo pathway blocks mammalian retinal M\u00fcller glial cell reprogramming. Cell Rep<\/i> 27<\/b>(1637\u20131649), e1636. https:\/\/doi.org\/10.1016\/j.celrep.2019.04.047<\/a> (2019).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pollak, J. et al.<\/i> ASCL1 reprograms mouse M\u00fcller glia into neurogenic retinal progenitors. Development<\/i> 140<\/b>, 2619\u20132631. https:\/\/doi.org\/10.1242\/dev.091355<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ueki, Y. et al.<\/i> Transgenic expression of the proneural transcription factor Ascl1 in M\u00fcller glia stimulates retinal regeneration in young mice. Proc. Natl. Acad. Sci. USA<\/i> 112<\/b>, 13717\u201313722. https:\/\/doi.org\/10.1073\/pnas.1510595112<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Jorstad, N. L. et al.<\/i> Stimulation of functional neuronal regeneration from M\u00fcller glia in adult mice. Nature<\/i> 548<\/b>, 103\u2013107. https:\/\/doi.org\/10.1038\/nature23283<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hoang, T. et al.<\/i> Gene regulatory networks controlling vertebrate retinal regeneration. Science<\/i> https:\/\/doi.org\/10.1126\/science.abb8598<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Palazzo, I. et al.<\/i> NFkB-signaling promotes glial reactivity and suppresses M\u00fcller glia-mediated neuron regeneration in the mammalian retina. Glia<\/i> 70<\/b>, 1380\u20131401. https:\/\/doi.org\/10.1002\/glia.24181<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Thummel, R., Kassen, S. C., Montgomery, J. E., Enright, J. M. & Hyde, D. R. Inhibition of M\u00fcller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev. Neurobiol.<\/i> 68<\/b>, 392\u2013408. https:\/\/doi.org\/10.1002\/dneu.20596<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Thomas, J. L., Ranski, A. H., Morgan, G. W. & Thummel, R. Reactive gliosis in the adult zebrafish retina. Exp. Eye Res.<\/i> 143<\/b>, 98\u2013109. https:\/\/doi.org\/10.1016\/j.exer.2015.09.017<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Joly, S., Pernet, V., Samardzija, M. & Grimm, C. Pax6-positive M\u00fcller glia cells express cell cycle markers but do not proliferate after photoreceptor injury in the mouse retina. Glia<\/i> 59<\/b>, 1033\u20131046. https:\/\/doi.org\/10.1002\/glia.21174<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Suga, A., Sadamoto, K., Fujii, M., Mandai, M. & Takahashi, M. Proliferation potential of M\u00fcller glia after retinal damage varies between mouse strains. PloS One<\/i> 9<\/b>, e94556. https:\/\/doi.org\/10.1371\/journal.pone.0094556<\/a> (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nomura-Komoike, K., Saitoh, F., Komoike, Y. & Fujieda, H. DNA damage response in proliferating M\u00fcller glia in the mammalian retina. Invest. Ophthalmol. Vis. Sci.<\/i> 57<\/b>, 1169\u20131182. https:\/\/doi.org\/10.1167\/iovs.15-18101<\/a> (2016).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Kato, M., Sudou, N., Nomura-Komoike, K., Iida, T. & Fujieda, H. Age- and cell cycle-related expression patterns of transcription factors and cell cycle regulators in M\u00fcller glia. Sci. Rep.<\/i> 12<\/b>, 19584. https:\/\/doi.org\/10.1038\/s41598-022-23855-w<\/a> (2022).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nomura-Komoike, K., Saitoh, F. & Fujieda, H. Phosphatidylserine recognition and Rac1 activation are required for M\u00fcller glia proliferation, gliosis and phagocytosis after retinal injury. Sci. Rep.<\/i> 10<\/b>, 1488. https:\/\/doi.org\/10.1038\/s41598-020-58424-6<\/a> (2020).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci.<\/i> 30<\/b>, 630\u2013641. https:\/\/doi.org\/10.1016\/j.tibs.2005.09.005<\/a> (2005).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localization is controlled by nuclear export. EMBO J.<\/i> 17<\/b>, 4127\u20134138. https:\/\/doi.org\/10.1093\/emboj\/17.14.4127<\/a> (1998).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci.<\/i> 3<\/b>, 517\u2013530. https:\/\/doi.org\/10.1038\/nrn874<\/a> (2002).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tomita, K., Nakanishi, S., Guillemot, F. & Kageyama, R. Mash1 promotes neuronal differentiation in the retina. Genes Cells<\/i> 1<\/b>, 765\u2013774. https:\/\/doi.org\/10.1111\/j.1365-2443.1996.tb00016.x<\/a> (1996).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Akagi, T. et al.<\/i> Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J. Biol. Chem.<\/i> 279<\/b>, 28492\u201328498. https:\/\/doi.org\/10.1074\/jbc.M400871200<\/a> (2004).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Matter-Sadzinski, L., Puzianowska-Kuznicka, M., Hernandez, J., Ballivet, M. & Matter, J. M. A bHLH transcriptional network regulating the specification of retinal ganglion cells. Development<\/i> 132<\/b>, 3907\u20133921. https:\/\/doi.org\/10.1242\/dev.01960<\/a> (2005).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Brzezinski, J. A., Kim, E. J., Johnson, J. E. & Reh, T. A. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development<\/i> 138<\/b>, 3519\u20133531. https:\/\/doi.org\/10.1242\/dev.064006<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fausett, B. V., Gumerson, J. D. & Goldman, D. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J. Neurosci.<\/i> 28<\/b>, 1109\u20131117. https:\/\/doi.org\/10.1523\/JNEUROSCI.4853-07.2008<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ramachandran, R., Fausett, B. V. & Goldman, D. Ascl1a regulates M\u00fcller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat. Cell Biol.<\/i> 12<\/b>, 1101\u20131107. https:\/\/doi.org\/10.1038\/ncb2115<\/a> (2010).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Sch\u00e4fer, P. & Karl, M. O. Prospective purification and characterization of M\u00fcller glia in the mouse retina regeneration assay. Glia<\/i> 65<\/b>, 828\u2013847. https:\/\/doi.org\/10.1002\/glia.23130<\/a> (2017).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nelson, B. R. et al.<\/i> Genome-wide analysis of M\u00fcller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PloS One<\/i> 6<\/b>, e22817. https:\/\/doi.org\/10.1371\/journal.pone.0022817<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Castro, D. S. et al.<\/i> A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev.<\/i> 25<\/b>, 930\u2013945. https:\/\/doi.org\/10.1101\/gad.627811<\/a> (2011).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Yi, S. H. et al.<\/i> Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action. Mol. Ther.<\/i> 16<\/b>, 1873\u20131882. https:\/\/doi.org\/10.1038\/mt.2008.189<\/a> (2008).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lacomme, M., Liaubet, L., Pituello, F. & Bel-Vialar, S. NEUROG2 drives cell cycle exit of neuronal precursors by specifically repressing a subset of cyclins acting at the G1 and S phases of the cell cycle. Mol. Cell Biol.<\/i> 32<\/b>, 2596\u20132607. https:\/\/doi.org\/10.1128\/MCB.06745-11<\/a> (2012).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Fisher, D. & Mechali, M. Vertebrate HoxB gene expression requires DNA replication. EMBO J.<\/i> 22<\/b>, 3737\u20133748. https:\/\/doi.org\/10.1093\/emboj\/cdg352<\/a> (2003).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Pop, R. et al.<\/i> A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol.<\/i> https:\/\/doi.org\/10.1371\/journal.pbio.1000484<\/a> (2010).<\/p>\n

    Article<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tusi, B. K. et al.<\/i> Population snapshots predict early haematopoietic and erythroid hierarchies. Nature<\/i> 555<\/b>, 54\u201360. https:\/\/doi.org\/10.1038\/nature25741<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Tsubouchi, T. & Fisher, A. G. Reprogramming and the pluripotent stem cell cycle. Curr. Top. Dev. Biol.<\/i> 104<\/b>, 223\u2013241. https:\/\/doi.org\/10.1016\/B978-0-12-416027-9.00007-3<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Wang, B., Pfeiffer, M. J., Schwarzer, C., Arauzo-Bravo, M. J. & Boiani, M. DNA replication is an integral part of the mouse oocyte\u2019s reprogramming machinery. PloS One<\/i> 9<\/b>, e97199. https:\/\/doi.org\/10.1371\/journal.pone.0097199<\/a> (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Nashun, B., Hill, P. W. & Hajkova, P. Reprogramming of cell fate: Epigenetic memory and the erasure of memories past. EMBO J.<\/i> 34<\/b>, 1296\u20131308. https:\/\/doi.org\/10.15252\/embj.201490649<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Todd, L. et al.<\/i> Efficient stimulation of retinal regeneration from M\u00fcller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep.<\/i> 37<\/b>, 109857. https:\/\/doi.org\/10.1016\/j.celrep.2021.109857<\/a> (2021).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Gallina, D., Todd, L. & Fischer, A. J. A comparative analysis of M\u00fcller glia-mediated regeneration in the vertebrate retina. Exp. Eye Res.<\/i> 123<\/b>, 121\u2013130. https:\/\/doi.org\/10.1016\/j.exer.2013.06.019<\/a> (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Lahne, M., Li, J., Marton, R. M. & Hyde, D. R. Actin-cytoskeleton- and Rock-mediated INM are required for photoreceptor regeneration in the adult zebrafish retina. J. Neurosci.<\/i> 35<\/b>, 15612\u201315634. https:\/\/doi.org\/10.1523\/JNEUROSCI.5005-14.2015<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Ul Quraish, R., Sudou, N., Nomura-Komoike, K., Sato, F. & Fujieda, H. p27(KIP1) loss promotes proliferation and phagocytosis but prevents epithelial-mesenchymal transition in RPE cells after photoreceptor damage. Mol. Vis.<\/i> 22<\/b>, 1103\u20131121 (2016).<\/p>\n

    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Simon, M. V., Prado Spalm, F. H., Politi, L. E. & Rotstein, N. P. Sphingosine-1-Phosphate is a crucial signal for migration of retina M\u00fcller glial clls. Invest. Ophthalmol. Vis. Sci.<\/i> 56<\/b>, 5808\u20135815. https:\/\/doi.org\/10.1167\/iovs.14-16195<\/a> (2015).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schneider, L. et al.<\/i> DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Rep.<\/i> 1<\/b>, 123\u2013138. https:\/\/doi.org\/10.1016\/j.stemcr.2013.06.004<\/a> (2013).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Schneider, L. Survival of neural stem cells undergoing DNA damage-induced astrocytic differentiation in self-renewal-promoting conditions in vitro. PloS One<\/i> 9<\/b>, e87228. https:\/\/doi.org\/10.1371\/journal.pone.0087228<\/a> (2014).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n
    ADS<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Guimaraes, R. P. M. et al.<\/i> Evidence of M\u00fcller glia conversion into retina ganglion cells using Neurogenin2. Front. Cell Neurosci.<\/i> 12<\/b>, 410. https:\/\/doi.org\/10.3389\/fncel.2018.00410<\/a> (2018).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n
    PubMed Central<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Cebolla, B. & Vallejo, M. Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J. Neurochem.<\/i> 97<\/b>, 1057\u20131070. https:\/\/doi.org\/10.1111\/j.1471-4159.2006.03804.x<\/a> (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Deneen, B. et al.<\/i> The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron<\/i> 52<\/b>, 953\u2013968. https:\/\/doi.org\/10.1016\/j.neuron.2006.11.019<\/a> (2006).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n

  • \n

    Dyer, M. A. & Cepko, C. L. Control of M\u00fcller glial cell proliferation and activation following retinal injury. Nat. Neurosci.<\/i> 3<\/b>, 873\u2013880 (2000).<\/p>\n

    Article<\/a> 
    \n
    CAS<\/a> 
    \n
    PubMed<\/a> 
    \n

    \n Google Scholar<\/a> \n <\/p>\n<\/li>\n