{"id":383886,"date":"2023-12-15T19:00:00","date_gmt":"2023-12-16T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/random-mutagenesis-of-phaeodactylum-tricornutum-using-ultraviolet-chemical-and-x-radiation-demonstrates-the-need-for-temporal-analysis-of-phenotype-stability-scientific-reports\/"},"modified":"2023-12-16T13:00:25","modified_gmt":"2023-12-16T18:00:25","slug":"random-mutagenesis-of-phaeodactylum-tricornutum-using-ultraviolet-chemical-and-x-radiation-demonstrates-the-need-for-temporal-analysis-of-phenotype-stability-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/random-mutagenesis-of-phaeodactylum-tricornutum-using-ultraviolet-chemical-and-x-radiation-demonstrates-the-need-for-temporal-analysis-of-phenotype-stability-scientific-reports\/","title":{"rendered":"Random mutagenesis of Phaeodactylum tricornutum using ultraviolet, chemical, and X-radiation demonstrates the need for temporal analysis of phenotype stability – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience<\/i> 67<\/b>, 386\u2013391 (2017).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Sabiha, N.-E., Salim, R., Rahman, S. & Rola-Rubzen, M. F. Measuring environmental sustainability in agriculture: A composite environmental impact index approach. J. Environ. Manag.<\/i> 166<\/b>, 84\u201393 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Fr\u00f3na, D., Szender\u00e1k, J. & Harangi-R\u00e1kos, M. The challenge of feeding the world. Sustainability<\/i> 11<\/b>, 5816 (2019).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M. & Gardner, R. D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res.<\/i> 54<\/b>, 102200 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Barolo, L. et al.<\/i> Perspectives for glyco-engineering of recombinant biopharmaceuticals from microalgae. Cells<\/i> 9<\/b>, 633 (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Ambati, R. R. et al.<\/i> Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit. Rev. Food Sci. Nutr.<\/i> 59<\/b>, 1880\u20131902 (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Khan, M. I., Shin, J. H. & Kim, J. D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact.<\/i> 17<\/b>, 36 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gong, M. & Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv.<\/i> 34<\/b>, 1396\u20131412 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Nuhma, M. J., Alias, H., Tahir, M. & Jazie, A. A. Microalgae biomass conversion into biofuel using modified HZSM-5 zeolite catalyst: A review. Mater. Today Proc.<\/i> 42<\/b>, 2308\u20132313 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Calijuri, M. L. et al.<\/i> Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. Chemosphere<\/i> 305<\/b>, 135508 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Fabris, M. et al.<\/i> Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci.<\/i> 11<\/b>, 279 (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Dragosits, M. & Mattanovich, D. Adaptive laboratory evolution\u2013principles and applications for biotechnology. Microb. Cell Fact.<\/i> 12<\/b>, 1\u201317 (2013).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Portnoy, V. A., Bezdan, D. & Zengler, K. Adaptive laboratory evolution\u2014harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol.<\/i> 22<\/b>, 590\u2013594 (2011).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Livneh, Z., Cohen-Fix, O., Skaliter, R. & Elizur, T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit. Rev. Biochem. Mol. Biol.<\/i> 28<\/b>, 465\u2013513. https:\/\/doi.org\/10.3109\/10409239309085136<\/a> (1993).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kim, Y., Schumaker, K. S. & Zhu, J.-K. EMS mutagenesis of Arabidopsis<\/i>. Methods Mol. Biol.<\/i> 323<\/b>, 101\u2013103 (2006).<\/p>\n

    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Borrego-Soto, G., Ortiz-L\u00f3pez, R. & Rojas-Mart\u00ednez, A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet. Mol. Biol.<\/i> 38<\/b>, 420\u2013432 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Ward, J. The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: A review. Int. J. Radiat. Biol.<\/i> 57<\/b>, 1141\u20131150 (1990).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Wang, M. et al.<\/i> Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresour. Technol.<\/i> 222<\/b>, 130\u2013138 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Beacham, T., Macia, V. M., Rooks, P., White, D. & Ali, S. Altered lipid accumulation in Nannochloropsis salina<\/i> CCAP849\/3 following EMS and UV induced mutagenesis. Biotechnol. Rep.<\/i> 7<\/b>, 87\u201394 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Meireles, L. A., Guedes, A. C. & Malcata, F. X. Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri<\/i> following random mutagenesis. Biotechnol. Bioeng.<\/i> 81<\/b>, 50\u201355 (2003).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Li, F.-F. et al.<\/i> Microalgae capture of CO2<\/sub> from actual flue gas discharged from a combustion chamber. Ind. Eng. Chem. Res.<\/i> 50<\/b>, 6496\u20136502 (2011).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Price, S., Kuzhiumparambil, U., Pernice, M. & Ralph, P. J. Cyanobacterial polyhydroxybutyrate for sustainable bioplastic production: Critical review and perspectives. J. Environ. Chem. Eng.<\/i> https:\/\/doi.org\/10.1016\/j.jece.2020.104007<\/a> (2020).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Yi, Z. et al.<\/i> Chemical mutagenesis and fluorescence-based high-throughput screening for enhanced accumulation of carotenoids in a model marine diatom Phaeodactylum tricornutum<\/i>. Mar. Drugs<\/i> https:\/\/doi.org\/10.3390\/md16080272<\/a> (2018).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Yi, Z. et al.<\/i> Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum<\/i> for enhanced carotenoid accumulation. Mar. Drugs<\/i> 13<\/b>, 6138\u20136151 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Nybom, N. Some experiences from mutation experiments in Chlamydomonas<\/i>. Hereditas<\/i> 39<\/b>, 317\u2013324 (1953).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Halberstaedter, L. & Back, A. The effect of X rays on single colonies of pandorina. Br. J. Radiol.<\/i> 15<\/b>, 124\u2013128 (1942).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kumar, H. Effects of radiations on blue-green algae: II. Effects in growth. Ann. Bot.<\/i> 28<\/b>, 555\u2013564 (1964).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Hashimoto, H., Uragami, C. & Cogdell, R. J. Carotenoids and photosynthesis. Carotenoids in nature<\/i>, 111\u2013139 (2016).<\/p>\n<\/li>\n

  • \n

    Henr\u00edquez, V., Escobar, C., Galarza, J. & Gimpel, J. Carotenoids in microalgae. Carotenoids in Nature<\/i>, 219\u2013237 (2016).<\/p>\n<\/li>\n

  • \n

    Gammone, M. A., Riccioni, G. & D\u2019Orazio, N. Marine carotenoids against oxidative stress: Effects on human health. Mar. Drugs<\/i> 13<\/b>, 6226\u20136246 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    McClure, D. D., Luiz, A., Gerber, B., Barton, G. W. & Kavanagh, J. M. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum<\/i>. Algal Res.<\/i> 29<\/b>, 41\u201348 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Macdonald Miller, S. et al.<\/i> Comparative study highlights the potential of spectral deconvolution for fucoxanthin screening in live Phaeodactylum tricornutum<\/i> cultures. Mar. Drugs<\/i> 20<\/b>, 19 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Fan, Y. et al.<\/i> Rapid sorting of fucoxanthin-producing Phaeodactylum tricornutum<\/i> mutants by flow cytometry. Mar. Drugs<\/i> 19<\/b>, 228 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Darley, W. M. & Volcani, B. Role of silicon in diatom metabolism: a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis<\/i> Reimann and Lewin. Exp. Cell Res.<\/i> 58<\/b>, 334\u2013342 (1969).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Friedberg, E. C. et al.<\/i> DNA Repair and Mutagenesis<\/i> 2nd edn. (American Society for Microbiology, 2005).<\/p>\n

    Book<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Bulankova, P. et al.<\/i> Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr. Biol.<\/i> 31<\/b>, 3221-3232.e3229 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Myung, K. & Kolodner, R. D. Induction of genome instability by DNA damage in Saccharomyces cerevisiae<\/i>. DNA Repair<\/i> 2<\/b>, 243\u2013258 (2003).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Trov\u00e3o, M. et al.<\/i> Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Mar. Drugs<\/i> 20<\/b>, 440 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gao, F., Teles, I., Ferrer-Ledo, N., Wijffels, R. H. & Barbosa, M. J. Production and high throughput quantification of fucoxanthin and lipids in Tisochrysis lutea<\/i> using single-cell fluorescence. Bioresour. Technol.<\/i> 318<\/b>, 124104 (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Pereira, H. et al.<\/i> Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res.<\/i> 30<\/b>, 113\u2013120 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gao, F., Cabanelas, I. T. D., Wijffels, R. H. & Barbosa, M. J. Fucoxanthin and docosahexaenoic acid production by cold-adapted Tisochrysis lutea<\/i>. New Biotechnol.<\/i> 66<\/b>, 16\u201324 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Tominaga, H., Kodama, S., Matsuda, N., Suzuki, K. & Watanabe, M. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation. J. Radiat. Res.<\/i> 45<\/b>, 181\u2013188 (2004).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Friedberg, E. C., Walker, G. C., Siede, W. & Wood, R. D. DNA Repair and Mutagenesis<\/i> (American Society for Microbiology Press, 2005).<\/p>\n

    Book<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Patel, M., Jiang, Q., Woodgate, R., Cox, M. M. & Goodman, M. F. A new model for SOS-induced mutagenesis: How RecA protein activates DNA polymerase V. Crit. Rev. Biochem. Mol. Biol.<\/i> 45<\/b>, 171\u2013184 (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n