{"id":373965,"date":"2023-12-08T19:00:00","date_gmt":"2023-12-09T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/analysis-of-endothelial-progenitor-cell-subtypes-as-clinical-biomarkers-for-elderly-patients-with-ischaemic-stroke-scientific-reports\/"},"modified":"2023-12-10T04:03:16","modified_gmt":"2023-12-10T09:03:16","slug":"analysis-of-endothelial-progenitor-cell-subtypes-as-clinical-biomarkers-for-elderly-patients-with-ischaemic-stroke-scientific-reports","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/analysis-of-endothelial-progenitor-cell-subtypes-as-clinical-biomarkers-for-elderly-patients-with-ischaemic-stroke-scientific-reports\/","title":{"rendered":"Analysis of endothelial progenitor cell subtypes as clinical biomarkers for elderly patients with ischaemic stroke – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Feigin, V. L. et al.<\/i> Global, regional, and national burden of stroke and its risk factors, 1990\u20132019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol.<\/i> 20<\/b>(10), 795\u2013820. https:\/\/doi.org\/10.1016\/S1474-4422(21)00252-0<\/a> (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    King, D. et al.<\/i> The future incidence, prevalence and costs of stroke in the UK. Age Ageing<\/i> 49<\/b>(2), 277\u2013282. https:\/\/doi.org\/10.1093\/ageing\/afz163<\/a> (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kadir, R. R. A. et al.<\/i> Outgrowth endothelial cell conditioned medium negates TNF-\u03b1-evoked cerebral barrier damage: A reverse translational research to explore mechanisms. Stem Cell Rev. Rep.<\/i> https:\/\/doi.org\/10.1007\/s12015-022-10439-4<\/a> (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Ya, J., Kadir, R. R. A. & Bayraktutan, U. Delay of endothelial cell senescence protects cerebral barrier against age-related dysfunction: Role of senolytics and senomorphics. Tissue Barriers<\/i> 11<\/b>, 2103353. https:\/\/doi.org\/10.1080\/21688370.2022.2103353<\/a> (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Guo, S. et al.<\/i> Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc. Natl. Acad. Sci. USA<\/i> 105<\/b>(21), 7582\u20137587. https:\/\/doi.org\/10.1073\/pnas.0801105105<\/a> (2008).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kadir, R. R. A., Alwjwaj, M. & Bayraktutan, U. Treatment with outgrowth endothelial cells protects cerebral barrier against ischemic injury. Cytotherapy<\/i> https:\/\/doi.org\/10.1016\/j.jcyt.2021.11.005<\/a> (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Abdulkadir, R. R. et al.<\/i> Outgrowth endothelial cells form a functional cerebral barrier and restore its integrity after damage. Neural Regen. Res.<\/i> 15<\/b>(6), 1071\u20131078. https:\/\/doi.org\/10.4103\/1673-5374.269029<\/a> (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Chambers, S. E. J. et al.<\/i> Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl. Med.<\/i> 10<\/b>(S2), S54\u2013S61. https:\/\/doi.org\/10.1002\/sctm.21-0022<\/a> (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Alwjwaj, M., Kadir, R. R. A. & Bayraktutan, U. The secretome of endothelial progenitor cells: A potential therapeutic strategy for ischemic stroke. Neural Regen. Res.<\/i> 16<\/b>(8), 1483\u20131489. https:\/\/doi.org\/10.4103\/1673-5374.303012<\/a> (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kadir, R. R. A. et al.<\/i> Inhibition of oxidative stress delays senescence and augments functional capacity of endothelial progenitor cells. Brain Res.<\/i> 1787<\/b>, 147925. https:\/\/doi.org\/10.1016\/j.brainres.2022.147925<\/a> (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kukumberg, M. et al.<\/i> Characterization and functional assessment of endothelial progenitor cells in ischemic stroke patients. Stem Cell Rev. Rep.<\/i> https:\/\/doi.org\/10.1007\/s12015-020-10064-z<\/a> (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    H\u00f6hn, A. et al.<\/i> Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol.<\/i> 11<\/b>, 482\u2013501. https:\/\/doi.org\/10.1016\/j.redox.2016.12.001<\/a> (2017).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Satoh, M. et al.<\/i> Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis<\/i> 198<\/b>(2), 347\u2013353. https:\/\/doi.org\/10.1016\/j.atherosclerosis.2007.09.040<\/a> (2008).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Rakkar, K. et al.<\/i> Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: Protocol for an observational case-control study. Neural. Regen. Res.<\/i> 15<\/b>(7), 1300\u20131307. https:\/\/doi.org\/10.4103\/1673-5374.269028<\/a> (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Martinez-Majander, N. et al.<\/i> Endothelial dysfunction is associated with early-onset cryptogenic ischemic stroke in men and with increasing age. J. Am. Heart Assoc.<\/i> 10<\/b>(14), e020838. https:\/\/doi.org\/10.1161\/JAHA.121.020838<\/a> (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kadir, R. R. A., Alwjwaj, M. & Bayraktutan, U. MicroRNA: An emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cell. Mol. Neurobiol.<\/i> https:\/\/doi.org\/10.1007\/s10571-020-01028-5<\/a> (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Chang, E. I. et al.<\/i> Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1\u03b1 stabilization during ischemia. Circulation<\/i> 116<\/b>(24), 2818\u20132829. https:\/\/doi.org\/10.1161\/CIRCULATIONAHA.107.715847<\/a> (2007).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Rakkar, K. et al.<\/i> Evaluation of endothelial progenitor cell characteristics as clinical biomarkers for elderly patients with ischaemic stroke. Stem Cell Rev. Rep.<\/i> https:\/\/doi.org\/10.1007\/s12015-023-10544-y<\/a> (2023).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Chu, K. et al.<\/i> Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke. Stroke<\/i> 39<\/b>(5), 1441\u20131447. https:\/\/doi.org\/10.1161\/STROKEAHA.107.499236<\/a> (2008).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Bayraktutan, U. Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacol. Res.<\/i> 144<\/b>, 181\u2013191. https:\/\/doi.org\/10.1016\/j.phrs.2019.04.017<\/a> (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Camps-Renom, P. et al.<\/i> Endothelial progenitor cells count after acute ischemic stroke predicts functional outcome in patients with carotid atherosclerosis. J. Stroke Cerebrovasc. Dis.<\/i> 30<\/b>(12), 106144. https:\/\/doi.org\/10.1016\/j.jstrokecerebrovasdis.2021.106144<\/a> (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gardener, H. et al.<\/i> Functional status at 30 and 90 days after mild ischaemic stroke. Stroke Vasc. Neurol.<\/i> 7<\/b>(5), 375\u2013380. https:\/\/doi.org\/10.1136\/svn-2021-001333<\/a> (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Pelosi, E. et al.<\/i> Identification of the hemangioblast in postnatal life. Blood<\/i> 100<\/b>(9), 3203\u20133208. https:\/\/doi.org\/10.1182\/blood-2002-05-1511<\/a> (2002).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Popa, E. R. et al.<\/i> Circulating CD34+ progenitor cells modulate host angiogenesis and inflammation in vivo. J. Mol. Cell Cardiol.<\/i> 41<\/b>(1), 86\u201396. https:\/\/doi.org\/10.1016\/j.yjmcc.2006.04.021<\/a> (2006).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Peichev, M. et al.<\/i> Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood<\/i> 95<\/b>(3), 952\u2013958 (2000).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Rossi, E. et al.<\/i> Human endothelial colony forming cells express intracellular CD133 that modulates their vasculogenic properties. Stem Cell Rev. Rep.<\/i> 15<\/b>(4), 590\u2013600. https:\/\/doi.org\/10.1007\/s12015-019-09881-8<\/a> (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Abumiya, T. et al.<\/i> Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J. Cereb. Blood Flow Metab.<\/i> 19<\/b>(9), 1038\u20131050. https:\/\/doi.org\/10.1097\/00004647-199909000-00012<\/a> (1999).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Di Santo, S. et al.<\/i> Novel cell-free strategy for therapeutic angiogenesis: In vitro generated conditioned medium can replace progenitor cell transplantation. PLoS ONE<\/i> 4<\/b>(5), e5643. https:\/\/doi.org\/10.1371\/journal.pone.0005643<\/a> (2009).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Lin, T. N. et al.<\/i> Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia\/reperfusion. Stroke<\/i> 34<\/b>(1), 177\u2013186. https:\/\/doi.org\/10.1161\/01.str.0000047100.84604.ba<\/a> (2003).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Skovseth, D. K. et al.<\/i> Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood<\/i> 105<\/b>(3), 1044\u20131051. https:\/\/doi.org\/10.1182\/blood-2004-03-1164<\/a> (2005).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Ji, W. R. et al.<\/i> Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J.<\/i> 12<\/b>(15), 1731\u20131738. https:\/\/doi.org\/10.1096\/fasebj.12.15.1731<\/a> (1998).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Zhang, C. et al.<\/i> Endostatin as a novel prognostic biomarker in acute ischemic stroke. Atherosclerosis<\/i> 293<\/b>, 42\u201348. https:\/\/doi.org\/10.1016\/j.atherosclerosis.2019.11.032<\/a> (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Abdullah, Z. & Bayraktutan, U. NADPH oxidase mediates TNF-\u03b1-evoked in vitro brain barrier dysfunction: Roles of apoptosis and time. Mol. Cell Neurosci.<\/i> 61<\/b>, 72\u201384. https:\/\/doi.org\/10.1016\/j.mcn.2014.06.002<\/a> (2014).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Allen, C. L. & Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke<\/i> 4<\/b>(6), 461\u2013470. https:\/\/doi.org\/10.1111\/j.1747-4949.2009.00387.x<\/a> (2009).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    \u00dclker, S., McKeown, P. P. & Bayraktutan, U. Vitamins reverse endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities. Hypertension<\/i> 41<\/b>(3), 534\u2013539. https:\/\/doi.org\/10.1161\/01.HYP.0000057421.28533.37<\/a> (2003).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Ulker, S. et al.<\/i> Antioxidant vitamins C and E ameliorate hyperglycaemia-induced oxidative stress in coronary endothelial cells. Diabetes Obes. Metab.<\/i> 6<\/b>(6), 442\u2013451. https:\/\/doi.org\/10.1111\/j.1462-8902.2004.00443.x<\/a> (2004).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    He, T., Joyner, M. J. & Katusic, Z. S. Aging decreases expression and activity of glutathione peroxidase-1 in human endothelial progenitor cells. Microvasc. Res.<\/i> 78<\/b>(3), 447\u2013452. https:\/\/doi.org\/10.1016\/j.mvr.2009.08.009<\/a> (2009).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Liu, Y. et al.<\/i> Proteomic analysis of endothelial progenitor cells exposed to oxidative stress. Int. J. Mol. Med.<\/i> 32<\/b>(3), 607\u2013614. https:\/\/doi.org\/10.3892\/ijmm.2013.1419<\/a> (2013).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Wang, C. et al.<\/i> MeCP2 mediated dysfunction in senescent EPCs. Oncotarget<\/i> 8<\/b>(45), 78289\u201378299 (2017).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Xia, W. H. et al.<\/i> Age-related decline in reendothelialization capacity of human endothelial progenitor cells is restored by shear stress. Hypertension<\/i> 59<\/b>(6), 1225\u20131231. https:\/\/doi.org\/10.1161\/HYPERTENSIONAHA.111.179820<\/a> (2012).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Capillo, M. et al.<\/i> Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin. Cancer Res.<\/i> 9<\/b>(1), 377 (2003).<\/p>\n

    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Meijles, D. N. et al.<\/i> The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Sci. Signal.<\/i> 10<\/b>(501), 1784. https:\/\/doi.org\/10.1126\/scisignal.aaj1784<\/a> (2017).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Cun, Y. et al.<\/i> Role of the stromal cell derived factor-1 in the biological functions of endothelial progenitor cells and its underlying mechanisms. Exp. Ther. Med.<\/i> 21<\/b>(1), 39. https:\/\/doi.org\/10.3892\/etm.2020.9471<\/a> (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Churdchomjan, W. et al.<\/i> Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control. BMC Endocr. Disord.<\/i> 10<\/b>(1), 5. https:\/\/doi.org\/10.1186\/1472-6823-10-5<\/a> (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Fadini, G. P. et al.<\/i> Gender differences in endothelial progenitor cells and cardiovascular risk profile. Arterioscler. Thromb. Vasc. Biol.<\/i> 28<\/b>(5), 997\u20131004. https:\/\/doi.org\/10.1161\/ATVBAHA.107.159558<\/a> (2008).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Deng, Y. et al.<\/i> Mobilization of endothelial progenitor cell in patients with acute ischemic stroke. Neurol. Sci.<\/i> 39<\/b>(3), 437\u2013443. https:\/\/doi.org\/10.1007\/s10072-017-3143-y<\/a> (2018).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Sahebkar, A. et al.<\/i> Does statin therapy reduce plasma VEGF levels in humans? A systematic review and meta-analysis of randomized controlled trials. Metabolism<\/i> 64<\/b>(11), 1466\u20131476. https:\/\/doi.org\/10.1016\/j.metabol.2015.08.002<\/a> (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Sodha, N. R. et al.<\/i> Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am. J. Physiol. Heart Circ. Physiol.<\/i> 296<\/b>(2), H428-434. https:\/\/doi.org\/10.1152\/ajpheart.00283.2008<\/a> (2009).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n