{"id":373812,"date":"2023-12-08T19:00:00","date_gmt":"2023-12-09T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/raas-deficient-organoids-indicate-delayed-angiogenesis-as-a-possible-cause-for-autosomal-recessive-renal-tubular-dysgenesis-nature-communications\/"},"modified":"2023-12-09T08:03:10","modified_gmt":"2023-12-09T13:03:10","slug":"raas-deficient-organoids-indicate-delayed-angiogenesis-as-a-possible-cause-for-autosomal-recessive-renal-tubular-dysgenesis-nature-communications","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/raas-deficient-organoids-indicate-delayed-angiogenesis-as-a-possible-cause-for-autosomal-recessive-renal-tubular-dysgenesis-nature-communications\/","title":{"rendered":"RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis – Nature Communications","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Lindstrom, N. O. et al. Integrated beta-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife<\/i> 3<\/b>, e04000 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Lindstrom, N. O. et al. Spatial transcriptional mapping of the human nephrogenic program. Dev. Cell<\/i> 56<\/b>, 2381\u20132398.e2386 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell<\/i> 18<\/b>, 698\u2013712 (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Rymer, C. et al. Renal blood flow and oxygenation drive nephron progenitor differentiation. Am. J. Physiol. Ren. Physiol.<\/i> 307<\/b>, F337\u2013345 (2014).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature<\/i> 536<\/b>, 238 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Morizane, R., Lam, A. Q., Freedman, B. S., Kishi, S., Valerius, M. T. & Bonventre, J. V. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol.<\/i> 33<\/b>, 1193\u20131200 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Morizane, R., Monkawa, T. & Itoh, H. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem. Biophys. Res. Commun.<\/i> 390<\/b>, 1334\u20131339 (2009).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell<\/i> 14<\/b>, 53\u201367 (2014).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods<\/i> 16<\/b>, 255\u2013262 (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Wu, H., Uchimura, K., Donnelly, E. L., Kirita, Y., Morris, S. A. & Humphreys, B. D. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell<\/i> 23<\/b>, 869\u2013881.e868 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol.<\/i> 27<\/b>, 1778\u20131791 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Koning, M. et al. Vasculogenesis in kidney organoids upon transplantation. NPJ Regen. Med.<\/i> 7<\/b>, 40 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep.<\/i> 10<\/b>, 751\u2013765 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Bantounas, I. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Rep.<\/i> 10<\/b>, 766\u2013779 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Dorison, A., Forbes, T. A. & Little, M. H. What can we learn from kidney organoids? Kidney Int.<\/i> 102<\/b>, 1013\u20131029 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Morizane, R. & Bonventre, J. V. Kidney organoids: a translational journey. Trends Mol. Med.<\/i> 23<\/b>, 246\u2013263 (2017).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol.<\/i> 15<\/b>, 613\u2013624 (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Freedman, B. S. Physiology assays in human kidney organoids. Am. J. Physiol. Ren. Physiol.<\/i> 322<\/b>, F625\u2013F638 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gubler, M. C. & Antignac, C. Renin-angiotensin system in kidney development: renal tubular dysgenesis. Kidney Int.<\/i> 77<\/b>, 400\u2013406 (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gubler, M. C. Renal tubular dysgenesis. Pediatr. Nephrol.<\/i> 29<\/b>, 51\u201359 (2014).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gribouval, O. et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum. Mutat.<\/i> 33<\/b>, 316\u2013326 (2012).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Gribouval, O. et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet.<\/i> 37<\/b>, 964\u2013968 (2005).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Vincent, K. M. et al. Expanding the clinical spectrum of autosomal-recessive renal tubular dysgenesis: two siblings with neonatal survival and review of the literature. Mol. Genet. Genom. Med.<\/i> 10<\/b>, e1920 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Schreiber, R., Gubler, M. C., Gribouval, O., Shalev, H. & Landau, D. Inherited renal tubular dysgenesis may not be universally fatal. Pediatr. Nephrol.<\/i> 25<\/b>, 2531\u20132534 (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Demirgan, E. B. et al. AGTR1-related renal tubular dysgeneses may not be fatal. Kidney Int. Rep.<\/i> 6<\/b>, 846\u2013852 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Oberg, K. C., Pestaner, J. P., Bielamowicz, L. & Hawkins, E. P. Renal tubular dysgenesis in twin-twin transfusion syndrome. Pediatr. Dev. Pathol.<\/i> 2<\/b>, 25\u201332 (1999).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Landing, B. H., Ang, S. M., Herta, N., Larson, E. F. & Turner, M. Labeled lectin studies of renal tubular dysgenesis and renal tubular atrophy of postnatal renal ischemia and end-stage kidney disease. Pediatr. Pathol.<\/i> 14<\/b>, 87\u201399 (1994).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Mahieu-Caputo, D. et al. Twin-to-twin transfusion syndrome. Role of the fetal renin-angiotensin system. Am. J. Pathol.<\/i> 156<\/b>, 629\u2013636 (2000).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Williams, B. A potential role for angiotensin II-induced vascular endothelial growth factor expression in the pathogenesis of diabetic nephropathy? Min. Electrolyte Metab.<\/i> 24<\/b>, 400\u2013405 (1998).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kang, Y. S. et al. Angiotensin II stimulates the synthesis of vascular endothelial growth factor through the p38 mitogen activated protein kinase pathway in cultured mouse podocytes. J. Mol. Endocrinol.<\/i> 36<\/b>, 377\u2013388 (2006).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Almeida, L. F., Tofteng, S. S., Madsen, K. & Jensen, B. L. Role of the renin-angiotensin system in kidney development and programming of adult blood pressure. Clin. Sci.<\/i> 134<\/b>, 641\u2013656 (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Tufro-McReddie, A., Romano, L. M., Harris, J. M., Ferder, L. & Gomez, R. A. Angiotensin II regulates nephrogenesis and renal vascular development. Am. J. Physiol.<\/i> 269<\/b>, F110\u2013115 (1995).<\/p>\n

    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Feliers, D. & Kasinath, B. S. Mechanism of VEGF expression by high glucose in proximal tubule epithelial cells. Mol. Cell Endocrinol.<\/i> 314<\/b>, 136\u2013142 (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Simon, M. et al. Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney. Am. J. Physiol.<\/i> 268<\/b>, F240\u2013250 (1995).<\/p>\n

    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Madsen, K. et al. Angiotensin II promotes development of the renal microcirculation through AT1 receptors. J. Am. Soc. Nephrol.<\/i> 21<\/b>, 448\u2013459 (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Ballermann, B. J. Dependence of renal microvessel density on angiotensin II: only in the fetus? J. Am. Soc. Nephrol.<\/i> 21<\/b>, 386\u2013388 (2010).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Mounier, F. et al. Ontogenesis of angiotensin-I converting enzyme in human kidney. Kidney Int.<\/i> 32<\/b>, 684\u2013690 (1987).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Wang, D. H., Du, Y., Zhao, H., Granger, J. P., Speth, R. C. & Dipette, D. J. Regulation of angiotensin type 1 receptor and its gene expression: role in renal growth. J. Am. Soc. Nephrol.<\/i> 8<\/b>, 193\u2013198 (1997).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Zhang, S. L., Guo, J., Moini, B. & Ingelfinger, J. R. Angiotensin II stimulates Pax-2 in rat kidney proximal tubular cells: impact on proliferation and apoptosis. Kidney Int.<\/i> 66<\/b>, 2181\u20132192 (2004).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Corvol, P., Michaud, A., Gribouval, O., Gasc, J. M. & Gubler, M. C. Can we live without a functional renin-angiotensin system? Clin. Exp. Pharm. Physiol.<\/i> 35<\/b>, 431\u2013433 (2008).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Shankar, A. S. et al. Human kidney organoids produce functional renin. Kidney Int.<\/i> 99<\/b>, 134\u2013147 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Pupilli, C. et al. Angiotensin II stimulates the synthesis and secretion of vascular permeability factor\/vascular endothelial growth factor in human mesangial cells. J. Am. Soc. Nephrol.<\/i> 10<\/b>, 245\u2013255 (1999).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Duvall, K., Crist, L., Perl, J. A., Pode Shaked, N., Chaturvedi, P. & Kopan, R. Revisiting the role of Notch in nephron segmentation confirms a role for proximal fate selection during mouse and human nephrogenesis. Development<\/i> 149<\/b>, dev200446 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Morizane, R. & Bonventre, J. V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nat. Protoc.<\/i> 12<\/b>, 195\u2013207 (2017).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature<\/i> 526<\/b>, 564\u2013568 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kim, Y. K. et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells<\/i> 35<\/b>, 2366\u20132378 (2017).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Uchimura, K., Wu, H., Yoshimura, Y. & Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep.<\/i> 33<\/b>, 108514 (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Selfa, I. L., Gallo, M., Montserrat, N. & Garreta, E. Directed differentiation of human pluripotent stem cells for the generation of high-order kidney organoids. Methods Mol. Biol.<\/i> 2258<\/b>, 171\u2013192 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Cruz, N. M. & Freedman, B. S. Differentiation of human kidney organoids from pluripotent stem cells. Methods Cell Biol.<\/i> 153<\/b>, 133\u2013150 (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun.<\/i> 12<\/b>, 2277 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Marable, S. S., Chung, E., Adam, M., Potter, S. S. & Park, J. S. Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight<\/i> 3<\/b>, e97497 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Chen, J., Xu, H., Aronow, B. J. & Jegga, A. G. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinforma.<\/i> 8<\/b>, 392 (2007).<\/p>\n

    Article<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res.<\/i> 37<\/b>, W305\u2013311 (2009).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Greene, A. S. & Amaral, S. L. Microvascular angiogenesis and the renin-angiotensin system. Curr. Hypertens. Rep.<\/i> 4<\/b>, 56\u201362 (2002).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Jarmas, A. E., Brunskill, W. E., Chaturvedi, P., Salomonis, N. & Kopan, R. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nat. Commun.<\/i> 12<\/b>, 6332 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Zhuo, J. L. & Li, X. C. Proximal nephron. Compr. Physiol.<\/i> 3<\/b>, 1079\u20131123 (2013).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Low, J. H. et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a De Novo vascular network. Cell Stem Cell<\/i> 25<\/b>, 373\u2013387.e379 (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Marti, H. H. & Risau, W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc. Natl. Acad. Sci. USA<\/i> 95<\/b>, 15809\u201315814 (1998).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Yanofsky, S. M. et al. Angiotensin II biphasically regulates cell differentiation in human iPSC-derived kidney organoids. Am. J. Physiol. Ren. Physiol.<\/i> 321<\/b>, F559\u2013F571 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    de Kloet, A. D., Krause, E. G., Kim, D. H., Sakai, R. R., Seeley, R. J. & Woods, S. C. The effect of angiotensin-converting enzyme inhibition using captopril on energy balance and glucose homeostasis. Endocrinology<\/i> 150<\/b>, 4114\u20134123 (2009).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Zhao, Q., Ishibashi, M., Hiasa, K., Tan, C., Takeshita, A. & Egashira, K. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension<\/i> 44<\/b>, 264\u2013270 (2004).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Xia, Y., Zhou, C. C., Ramin, S. M. & Kellems, R. E. Angiotensin receptors, autoimmunity, and preeclampsia. J. Immunol.<\/i> 179<\/b>, 3391\u20133395 (2007).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Ager, E. I., Neo, J. & Christophi, C. The renin-angiotensin system and malignancy. Carcinogenesis<\/i> 29<\/b>, 1675\u20131684 (2008).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Li, Y., Yan, Z., Chaudhry, K. & Kazlauskas, A. The Renin-Angiotensin-Aldosterone System (RAAS) Is One of the Effectors by Which Vascular Endothelial Growth Factor (VEGF)\/Anti-VEGF Controls the Endothelial Cell Barrier. Am. J. Pathol.<\/i> 190<\/b>, 1971\u20131981 (2020).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Hilgers, K. F., Reddi, V., Krege, J. H., Smithies, O. & Gomez, R. A. Aberrant renal vascular morphology and renin expression in mutant mice lacking angiotensin-converting enzyme. Hypertension<\/i> 29<\/b>, 216\u2013221 (1997).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Oliverio, M. I. et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc. Natl. Acad. Sci. USA<\/i> 95<\/b>, 15496\u201315501 (1998).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Kajiwara, K., Ozawa, K., Wada, S. & Samura, O. Molecular mechanisms underlying twin-to-twin transfusion syndrome. Cells<\/i> 11<\/b>, 3268 (2022).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Loquet, P., Pipkin, F.B., Symonds, E.M. & Rubin, P.C. Influence of raising maternal blood pressure with angiotensin II on utero-placental and feto-placental blood velocity indices in the human. Clin. Sci.<\/i> 78<\/b>, 95\u2013100 (1990).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Nonn, O. et al. Maternal angiotensin increases placental leptin in early gestation via an alternative renin-angiotensin system pathway: suggesting a link to preeclampsia. Hypertension<\/i> 77<\/b>, 1723\u20131736 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Fischer, B. & Bavister, B. D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil.<\/i> 99<\/b>, 673\u2013679 (1993).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Garcia-Martinez, S. et al. Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. Mol. Hum. Reprod.<\/i> 24<\/b>, 260\u2013270 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Keeley, T. P. & Mann, G. E. Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol. Rev.<\/i> 99<\/b>, 161\u2013234 (2019).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Sparrow, D. B. et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell<\/i> 149<\/b>, 295\u2013306 (2012).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature<\/i> 470<\/b>, 105\u2013109 (2011).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol.<\/i> 17<\/b>, 148 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR\/Cas system. Cell<\/i> 155<\/b>, 1479\u20131491 (2013).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X. & Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science<\/i> 351<\/b>, 84\u201388 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Omer, D. et al. Human kidney spheroids and monolayers provide insights into SARS-CoV-2 renal interactions. J. Am. Soc. Nephrol.<\/i> 32<\/b>, 2242\u20132254 (2021).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science<\/i> 318<\/b>, 1917\u20131920 (2007).<\/p>\n

    Article<\/a>\u00a0
    \n
    ADS<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics<\/i> 34<\/b>, i884\u2013i890 (2018).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.<\/i> 34<\/b>, 525\u2013527 (2016).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res<\/i> 4<\/b>, 1521 (2015).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.<\/i> 15<\/b>, 550 (2014).<\/p>\n

    Article<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n

  • \n

    Watson, C. L. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med.<\/i> 20<\/b>, 1310\u20131314 (2014).<\/p>\n

    Article<\/a>\u00a0
    \n
    CAS<\/a>\u00a0
    \n
    PubMed<\/a>\u00a0
    \n
    PubMed Central<\/a>\u00a0
    \n

    \n Google Scholar<\/a>\u00a0\n <\/p>\n<\/li>\n