{"id":29000,"date":"2023-09-13T20:00:00","date_gmt":"2023-09-14T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/foxo-transcription-factors-as-mediators-of-stress-adaptation-nature-reviews-molecular-cell-biology\/"},"modified":"2023-09-16T12:20:05","modified_gmt":"2023-09-16T16:20:05","slug":"foxo-transcription-factors-as-mediators-of-stress-adaptation-nature-reviews-molecular-cell-biology","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/foxo-transcription-factors-as-mediators-of-stress-adaptation-nature-reviews-molecular-cell-biology\/","title":{"rendered":"FOXO transcription factors as mediators of stress adaptation – Nature Reviews Molecular Cell Biology","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans<\/i>. Genetics<\/i> 150<\/b>, 129\u2013155 (1998).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans<\/i>. Nature<\/i> 424<\/b>, 277\u2013283 (2003).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans<\/i> life-span and metabolism. Science<\/i> 300<\/b>, 644\u2013647 (2003).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Jenkins, N. L., McColl, G. & Lithgow, G. J. Fitness cost of extended lifespan in Caenorhabditis elegans<\/i>. Proc. Biol. Sci.<\/i> 271<\/b>, 2523\u20132526 (2004).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell<\/i> 120<\/b>, 449\u2013460 (2005). This is one of the first papers to show that a single specific genetic mutation (<\/b>daf-2<\/i><\/b>) can increase lifespan and can be reverted by a second mutation (<\/b>daf-16<\/i><\/b>), revealing a connection between insulin signalling and lifespan<\/b>.<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans<\/i> mutant that lives twice as long as wild type. Nature<\/i> 366<\/b>, 461\u2013464 (1993).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Willcox, B. J. et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA<\/i> 105<\/b>, 13987\u201313992 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Santo, E. E. et al. FOXO3A-short is a novel regulator of non-oxidative glucose metabolism associated with human longevity. Aging Cell<\/i> 22<\/b>, e13763 (2023).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol.<\/i> 14<\/b>, 83\u201397 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Liang, R. & Ghaffari, S. Stem cells seen through the FOXO lens: an evolving paradigm. Curr. Top. Dev. Biol.<\/i> 127<\/b>, 23\u201347 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance physiologic oxid. stress. Cell<\/i> 128<\/b>, 325\u2013339 (2007). This study shows the redundancy of FOXO1, FOXO3 and FOXO4 in HSC maintenance and that antioxidant defence downstream of FOXO is a key driver of stem cell maintenance.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Shimokawa, I. et al. The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell<\/i> 14<\/b>, 707\u2013709 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hwang, I. et al. FOXO protects against age-progressive axonal degeneration. Aging Cell<\/i> 17<\/b>, e12701 (2018).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Du, S. et al. FoxO3 deficiency in cortical astrocytes leads to impaired lipid metabolism and aggravated amyloid pathology. Aging Cell<\/i> 20<\/b>, e13432 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nat. Rev. Immunol.<\/i> 12<\/b>, 649\u2013661 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Calissi, G., Lam, E. W. & Link, W. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Discov.<\/i> 20<\/b>, 21\u201338 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Brown, A. K. & Webb, A. E. Regulation of FOXO factors in mammalian cells. Curr. Top. Dev. Biol.<\/i> 127<\/b>, 165\u2013192 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Calnan, D. R. & Brunet, A. The FoxO code. Oncogene<\/i> 27<\/b>, 2276\u20132288 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Franz, F. et al. The transcriptional regulation of FOXO genes in thyrocytes. Horm. Metab. Res.<\/i> 48<\/b>, 601\u2013606 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Urbanek, P. & Klotz, L. O. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br. J. Pharmacol.<\/i> 174<\/b>, 1514\u20131532 (2017).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Asmamaw, M. D., Liu, Y., Zheng, Y. C., Shi, X. J. & Liu, H. M. Skp2 in the ubiquitin\u2013proteasome system: a comprehensive review. Med. Res. Rev.<\/i> 40<\/b>, 1920\u20131949 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Brenkman, A. B., de Keizer, P. L., van den Broek, N. J., Jochemsen, A. G. & Burgering, B. M. Mdm2 induces mono-ubiquitination of FOXO4. PLoS ONE<\/i> 3<\/b>, e2819 (2008).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Huang, H. & Tindall, D. J. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim. Biophys. Acta<\/i> 1813<\/b>, 1961\u20131964 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, X., Wang, J. & Jiang, X. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J. Biol. Chem.<\/i> 286<\/b>, 23725\u201323734 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Grossman, S. R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science<\/i> 300<\/b>, 342\u2013344 (2003).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhou, B. P. et al. HER-2\/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat. Cell Biol.<\/i> 3<\/b>, 973\u2013982 (2001).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase\/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA<\/i> 98<\/b>, 11598\u201311603 (2001).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7\/HAUSP. Nat. Cell Biol.<\/i> 8<\/b>, 1064\u20131073 (2006).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Heimbucher, T. & Hunter, T. The C. elegans<\/i> ortholog of USP7 controls DAF-16 stability in insulin\/IGF-1-like signaling. Worm<\/i> 4<\/b>, e1103429 (2015).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kops, G. J. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature<\/i> 398<\/b>, 630\u2013634 (1999).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell<\/i> 96<\/b>, 857\u2013868 (1999). This study and the study by Kops et al. (1999) are the first to show that the regulation of FOXOs, the orthologues of DAF-16 in mammalians, are directly controlled by AKT and PI3K signalling, thereby showing evolutionary conservation.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Brownawell, A. M., Kops, G. J., Macara, I. G. & Burgering, B. M. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell Biol.<\/i> 21<\/b>, 3534\u20133546 (2001).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J.<\/i> 23<\/b>, 4802\u20134812 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Putker, M. et al. Redox-dependent control of FOXO\/DAF-16 by transportin-1. Mol. Cell<\/i> 49<\/b>, 730\u2013742 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Putker, M. et al. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling. Antioxid. Redox Signal.<\/i> 22<\/b>, 15\u201328 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev.<\/i> 25<\/b>, 2227\u20132241 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3\/fork head DNA-recognition motif resembles histone H5. Nature<\/i> 364<\/b>, 412\u2013420 (1993).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, F. et al. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J. Mol. Biol.<\/i> 384<\/b>, 590\u2013603 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bourgeois, B. et al. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep.<\/i> 36<\/b>, 109446 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Obsil, T. & Obsilova, V. Structural basis for DNA recognition by FOXO proteins. Biochim. Biophys. Acta<\/i> 1813<\/b>, 1946\u20131953 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Li, J. et al. Mechanism of forkhead transcription factors binding to a novel palindromic DNA site. Nucleic Acids Res.<\/i> 49<\/b>, 3573\u20133583 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Psenakova, K. et al. Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells<\/i> 8<\/b>, 966 (2019).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature<\/i> 447<\/b>, 1021\u20131025 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Shoemaker, B. A., Portman, J. J. & Wolynes, P. G. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl Acad. Sci. USA<\/i> 97<\/b>, 8868\u20138873 (2000).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Dansen, T. B. et al. Redox-sensitive cysteines bridge p300\/CBP-mediated acetylation and FoxO4 activity. Nat. Chem. Biol.<\/i> 5<\/b>, 664\u2013672 (2009). This study is among the first to show that redox signalling, similar to growth factor signalling, proceeds through protein\u2013<\/b>protein interactions that are enforced by redox-sensitive cysteine disulfide bridges.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol.<\/i> 21<\/b>, 363\u2013383 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    van der Horst, A. et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2. J. Biol. Chem.<\/i> 279<\/b>, 28873\u201328879 (2004).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yoshimochi, K., Daitoku, H. & Fukamizu, A. PCAF represses transactivation function of FOXO1 in an acetyltransferase-independent manner. J. Recept. Signal Transduct. Res.<\/i> 30<\/b>, 43\u201349 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Adamowicz, M., Vermezovic, J. & d\u2019Adda di Fagagna, F. NOTCH1 inhibits activation of ATM by impairing the formation of an ATM-FOXO3a-KAT5\/Tip60 complex. Cell Rep.<\/i> 16<\/b>, 2068\u20132076 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science<\/i> 303<\/b>, 2011\u20132015 (2004). This study, together with van der Horst et al. (2004) provides a mechanistic link between FOXO and SIRT, which were independently shown to affect lifespan.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA<\/i> 101<\/b>, 10042\u201310047 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Tseng, A. H., Wu, L. H., Shieh, S. S. & Wang, D. L. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem. J.<\/i> 464<\/b>, 157\u2013168 (2014).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell<\/i> 145<\/b>, 607\u2013621 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Daitoku, H., Sakamaki, J. & Fukamizu, A. Regulation of FoxO transcription factors by acetylation and protein\u2013protein interactions. Biochim. Biophys. Acta<\/i> 1813<\/b>, 1954\u20131960 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Riedel, C. G. et al. DAF-16 employs the chromatin remodeller SWI\/SNF to promote stress resistance and longevity. Nat. Cell Biol.<\/i> 15<\/b>, 491\u2013501 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Webb, A. E. & Brunet, A. FOXO flips the longevity SWItch. Nat. Cell Biol.<\/i> 15<\/b>, 444\u2013446 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Mattila, J., Kallijarvi, J. & Puig, O. RNAi screening for kinases and phosphatases identifies FoxO regulators. Proc. Natl Acad. Sci. USA<\/i> 105<\/b>, 14873\u201314878 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Liu, J. et al. Targeting the BRD4\/FOXO3a\/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat. Commun.<\/i> 9<\/b>, 5200 (2018).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Webb, A. E., Kundaje, A. & Brunet, A. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell<\/i> 15<\/b>, 673\u2013685 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hao, N. & O\u2019Shea, E. K. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat. Struct. Mol. Biol.<\/i> 19<\/b>, 31\u201339 (2011).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Demirbas, B. et al. Control of C. elegans<\/i> growth arrest by stochastic, yet synchronized DAF-16\/FOXO nuclear translocation pulses. Preprint at bioRxiv<\/i> https:\/\/doi.org\/10.1101\/2023.07.05.547674<\/a> (2023).<\/p>\n<\/li>\n

  • \n

    Lasick, K. A. et al. FOXO nuclear shuttling dynamics are stimulus-dependent and correspond with cell fate. Mol. Biol. Cell<\/i> 34<\/b>, ar21 (2023).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hatta, M. & Cirillo, L. A. Chromatin opening and stable perturbation of core histone: DNA contacts by FoxO1. J. Biol. Chem.<\/i> 282<\/b>, 35583\u201335593 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hatta, M., Liu, F. & Cirillo, L. A. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1. Biochem. Biophys. Res. Commun.<\/i> 379<\/b>, 1005\u20131008 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Eijkelenboom, A., Mokry, M., Smits, L. M., Nieuwenhuis, E. E. & Burgering, B. M. FOXO3 selectively amplifies enhancer activity to establish target gene regulation. Cell Rep.<\/i> 5<\/b>, 1664\u20131678 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae<\/i> reveals the architecture of biological noise. Nature<\/i> 441<\/b>, 840\u2013846 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Allgayer, J., Kitsera, N., Bartelt, S., Epe, B. & Khobta, A. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine. Nucleic Acids Res.<\/i> 44<\/b>, 7267\u20137280 (2016).<\/p>\n

    CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Desai, R. V. et al. A DNA repair pathway can regulate transcriptional noise to promote cell fate transitions. Science<\/i> 373<\/b>, eabc6506 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Raser, J. M. & O\u2019Shea, E. K. Noise in gene expression: origins, consequences, and control. Science<\/i> 309<\/b>, 2010\u20132013 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science<\/i> 336<\/b>, 183\u2013187 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wong, V. C. et al. NF-kappaB-chromatin interactions drive diverse phenotypes by modulating transcriptional noise. Cell Rep.<\/i> 22<\/b>, 585\u2013599 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Comandante-Lou, N., Baumann, D. G. & Fallahi-Sichani, M. AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells. Cell Rep.<\/i> 40<\/b>, 111147 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature<\/i> 441<\/b>, 1011\u20131014 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Somel, M., Khaitovich, P., Bahn, S., Paabo, S. & Lachmann, M. Gene expression becomes heterogeneous with age. Curr. Biol.<\/i> 16<\/b>, R359\u2013R360 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Rangaraju, S. et al. Suppression of transcriptional drift extends C. elegans<\/i> lifespan by postponing the onset of mortality. eL<\/i>ife<\/i> 4<\/b>, e08833 (2015).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell<\/i> 173<\/b>, 1385\u20131397.e14 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Burgess, D. J. Human epigenetics: showing your age. Nat. Rev. Genet.<\/i> 14<\/b>, 6 (2013).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell<\/i> 62<\/b>, 728\u2013744 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Fielenbach, N. & Antebi, A. C. elegans<\/i> Dauer formation and the molecular basis of plasticity. Genes Dev.<\/i> 22<\/b>, 2149\u20132165 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature<\/i> 404<\/b>, 782\u2013787 (2000). This study links FOXO function to inhibition of the cell cycle, thereby suggesting a role for FOXOs in tissue homeostasis and cancer.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Furukawa-Hibi, Y., Yoshida-Araki, K., Ohta, T., Ikeda, K. & Motoyama, N. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J. Biol. Chem.<\/i> 277<\/b>, 26729\u201326732 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hornsveld, M. et al. A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Rep.<\/i> 34<\/b>, 108675 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sekimoto, T., Fukumoto, M. & Yoneda, Y. 14-3-3 Suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J.<\/i> 23<\/b>, 1934\u20131942 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Blain, S. W. & Massague, J. Breast cancer banishes p27 from nucleus. Nat. Med.<\/i> 8<\/b>, 1076\u20131078 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Gao, D. et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat. Cell Biol.<\/i> 11<\/b>, 397\u2013408 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA<\/i> 102<\/b>, 1649\u20131654 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Shtivelman, E., Sussman, J. & Stokoe, D. A role for PI 3-kinase and PKB activity in the G2\/M phase of the cell cycle. Curr. Biol.<\/i> 12<\/b>, 919\u2013924 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat. Cell Biol.<\/i> 6<\/b>, 1229\u20131235 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Ou, L. et al. Incomplete folding upon binding mediates Cdk4\/cyclin D complex activation by tyrosine phosphorylation of inhibitor p27 protein. J. Biol. Chem.<\/i> 286<\/b>, 30142\u201330151 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol.<\/i> 4<\/b>, e83 (2006).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Grana, X., Garriga, J. & Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene<\/i> 17<\/b>, 3365\u20133383 (1998).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Smith, E. J., Leone, G., DeGregori, J., Jakoi, L. & Nevins, J. R. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol. Cell Biol.<\/i> 16<\/b>, 6965\u20136976 (1996).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol.<\/i> 22<\/b>, 2025\u20132036 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell<\/i> 120<\/b>, 513\u2013522 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell<\/i> 14<\/b>, 458\u2013470 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    de Keizer, P. L. et al. Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res.<\/i> 70<\/b>, 8526\u20138536 (2010).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell<\/i> 169<\/b>, 132\u2013147.e16 (2017). This paper shows that FOXOs can be a target for the specific elimination of senescent cells in order to mitigate age-related decline.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell<\/i> 155<\/b>, 1104\u20131118 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell<\/i> 155<\/b>, 1119\u20131130 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.<\/i> 11<\/b>, 298\u2013300 (1956).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans<\/i>. FASEB J.<\/i> 13<\/b>, 1385\u20131393 (1999). This is the first study to show that DAF-16 regulates the expression of antioxidant enzymes, providing a link between the free radical theory of ageing and DAF-16-dependent lifespan extension.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Honda, Y. & Honda, S. Life span extensions associated with upregulation of gene expression of antioxidant enzymes in Caenorhabdms elegans<\/i>; studies of mutation in the AGE-1, PI3 kinase homologue and short-term exposure to hyperoxia. J. Am. Aging Assoc.<\/i> 24<\/b>, 179\u2013186 (2001).<\/p>\n

    CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell<\/i> 128<\/b>, 309\u2013323 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Klotz, L. O. et al. Redox regulation of FoxO transcription factors. Redox Biol.<\/i> 6<\/b>, 51\u201372 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol.<\/i> 23<\/b>, 499\u2013515 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Netto, L. E. S. & Machado, L. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J.<\/i> 289<\/b>, 5480\u20135504 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Snyder, N. A. & Silva, G. M. Deubiquitinating enzymes (DUBs): regulation, homeostasis, and oxidative stress response. J. Biol. Chem.<\/i> 297<\/b>, 101077 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, Y. & Hekimi, S. Mitochondrial dysfunction and longevity in animals: untangling the knot. Science<\/i> 350<\/b>, 1204\u20131207 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Van Raamsdonk, J. M. & Hekimi, S. Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl Acad. Sci. USA<\/i> 109<\/b>, 5785\u20135790 (2012).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hoehne, M. N. et al. Spatial and temporal control of mitochondrial H(2) O(2) release in intact human cells. EMBO J.<\/i> 41<\/b>, e109169 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Saeedi Saravi, S. S. et al. Differential endothelial signaling responses elicited by chemogenetic H(2)O(2) synthesis. Redox Biol.<\/i> 36<\/b>, 101605 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Gross, D. N., van den Heuvel, A. P. & Birnbaum, M. J. The role of FoxO in the regulation of metabolism. Oncogene<\/i> 27<\/b>, 2320\u20132336 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Postic, C., Dentin, R. & Girard, J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab.<\/i> 30<\/b>, 398\u2013408 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Altomonte, J. et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J. Clin. Invest.<\/i> 114<\/b>, 1493\u20131503 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bastie, C. C. et al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. J. Biol. Chem.<\/i> 280<\/b>, 14222\u201314229 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kamei, Y. et al. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett.<\/i> 536<\/b>, 232\u2013236 (2003).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Belgardt, B. F. et al. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab.<\/i> 7<\/b>, 291\u2013301 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kim, M. S. et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci.<\/i> 9<\/b>, 901\u2013906 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med.<\/i> 12<\/b>, 534\u2013540 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell<\/i> 149<\/b>, 1314\u20131326 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Peck, B., Ferber, E. C. & Schulze, A. Antagonism between FOXO and MYC regulates cellular powerhouse. Front. Oncol.<\/i> 3<\/b>, 96 (2013).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell Biol.<\/i> 25<\/b>, 6225\u20136234 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ.<\/i> 19<\/b>, 968\u2013979 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cheng, Z. et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat. Med.<\/i> 15<\/b>, 1307\u20131311 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol.<\/i> 15<\/b>, 235\u2013259 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, K. et al. miR-484 regulates mitochondrial network through targeting Fis1. Nat. Commun.<\/i> 3<\/b>, 781 (2012).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl Acad. Sci. USA<\/i> 106<\/b>, 5153\u20135158 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cheng, Z. FoxO transcription factors in mitochondrial homeostasis. Biochem. J.<\/i> 479<\/b>, 525\u2013536 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Munoz-Martin, N., Sierra, R., Schimmang, T., Villa Del Campo, C. & Torres, M. Myc is dispensable for cardiomyocyte development but rescues Mycn-deficient hearts through functional replacement and cell competition. Development<\/i> 146<\/b>, dev170753 (2019).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Muncan, V. et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt\/Tcf-4 target gene c-Myc. Mol. Cell Biol.<\/i> 26<\/b>, 8418\u20138426 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature<\/i> 446<\/b>, 676\u2013679 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Lettieri-Barbato, D. et al. FoxO1 localizes to mitochondria of adipose tissue and is affected by nutrient stress. Metabolism<\/i> 95<\/b>, 84\u201392 (2019).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Caballero-Caballero, A. et al. Mitochondrial localization of the forkhead box class O transcription factor FOXO3a in brain. J. Neurochem.<\/i> 124<\/b>, 749\u2013756 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol.<\/i> 20<\/b>, 745\u2013754 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chakrabarty, R. P. & Chandel, N. S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell<\/i> 28<\/b>, 394\u2013408 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Klimovich, A. et al. Non-senescent hydra tolerates severe disturbances in the nuclear lamina. Aging<\/i> 10<\/b>, 951\u2013972 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Martinez, D. E. Mortality patterns suggest lack of senescence in hydra. Exp. Gerontol.<\/i> 33<\/b>, 217\u2013225 (1998).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Boehm, A. M. et al. FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc. Natl Acad. Sci. USA<\/i> 109<\/b>, 19697\u201319702 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bridge, D. et al. FoxO and stress responses in the cnidarian Hydra vulgaris<\/i>. PLoS ONE<\/i> 5<\/b>, e11686 (2010). This is the first paper to show that FOXO is expressed in the cnidarian<\/b> H. vulgaris<\/i><\/b>, and that FOXO-dependent adaptation to stress was introduced early in animal evolution.<\/b><\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Schultz, M. B. & Sinclair, D. A. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development<\/i> 143<\/b>, 3\u201314 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science<\/i> 327<\/b>, 542\u2013545 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Paik, J. H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell<\/i> 5<\/b>, 540\u2013553 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell<\/i> 5<\/b>, 527\u2013539 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Garcia-Prat, L. et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat. Cell Biol.<\/i> 22<\/b>, 1307\u20131318 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, G. et al. p110alpha of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO J.<\/i> 37<\/b>, e98239 (2018).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yue, F. et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat. Commun.<\/i> 8<\/b>, 14328 (2017).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell<\/i> 1<\/b>, 101\u2013112 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Tothova, Z. & Gilliland, D. G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell<\/i> 1<\/b>, 140\u2013152 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W. & DePinho, R. A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science<\/i> 301<\/b>, 215\u2013218 (2003). This study establishes a link between FOXO function and fecundity in mice, thereby establishing a FOXO-dependent evolutionary conserved trade-off between fecundity and lifespan.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans<\/i>. Genetics<\/i> 148<\/b>, 703\u2013717 (1998).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Giannakou, M. E. et al. Long-lived Drosophila<\/i> with overexpressed dFOXO in adult fat body. Science<\/i> 305<\/b>, 361 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Schaffner, I. et al. FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron<\/i> 99<\/b>, 1188\u20131203.e6 (2018).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yeo, H. et al. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J.<\/i> 32<\/b>, 2589\u20132602 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Gopinath, S. D., Webb, A. E., Brunet, A. & Rando, T. A. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep.<\/i> 2<\/b>, 414\u2013426 (2014). This paper, together with Garcia-Prat et al. (2020), shows the role of FOXOs and redox regulation in quiescent adult (muscle) stem cells.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhang, L., Issa Bhaloo, S., Chen, T., Zhou, B. & Xu, Q. Role of resident stem cells in vessel formation and arteriosclerosis. Circ. Res.<\/i> 122<\/b>, 1608\u20131624 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Andrade, J. et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat. Cell Biol.<\/i> 23<\/b>, 413\u2013423 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature<\/i> 529<\/b>, 216\u2013220 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. & Schofield, C. J. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem.<\/i> 87<\/b>, 585\u2013620 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Charitou, P. et al. FOXOs support the metabolic requirements of normal and tumor cells by promoting IDH1 expression. EMBO Rep.<\/i> 16<\/b>, 456\u2013466 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature<\/i> 431<\/b>, 997\u20131002 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kim, J. & Wong, P. K. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cell<\/i> 27<\/b>, 1987\u20131998 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J.<\/i> 32<\/b>, 3017\u20133028 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Rodriguez-Colman, M. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature<\/i> 543<\/b>, 424\u2013427 (2017). One of the first studies that shows metabolic crosstalk between niche and stem cells, thereby showing that next to growth factors, metabolites<\/b> also act as crucial signalling molecules in stem cell maintenance.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K\/Akt-dependant manner. Cell Stem Cell<\/i> 8<\/b>, 59\u201371 (2011).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell<\/i> 117<\/b>, 399\u2013412 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell<\/i> 10<\/b>, 515\u2013519 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Benjamin, D. I. et al. Fasting induces a highly resilient deep quiescent state in muscle stem cells via ketone body signaling. Cell Metab.<\/i> 34<\/b>, 902\u2013918.e6 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature<\/i> 579<\/b>, 111\u2013117 (2020). This study shows how FOXO can sense the metabolic environment and, in response, specify cell differentiation.<\/b><\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Matsuzaki, T. et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl Med<\/i> 10<\/b>, eaan0746 (2018).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol.<\/i> 22<\/b>, 39\u201353 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol.<\/i> 19<\/b>, 1027\u20131036 (2017).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Ludikhuize, M. C. et al. Mitochondria define intestinal stem cell differentiation downstream of a FOXO\/Notch axis. Cell Metab.<\/i> 32<\/b>, 889\u2013900.e7 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell<\/i> 165<\/b>, 1708\u20131720 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chen, Z. et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J. Exp. Med.<\/i> 218<\/b>, e20210324 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol.<\/i> 12<\/b>, 665\u2013675 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hornsveld, M. et al. FOXO transcription factors both suppress and support breast cancer progression. Cancer Res.<\/i> 78<\/b>, 2356\u20132369 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sykes, S. M. et al. AKT\/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell<\/i> 146<\/b>, 697\u2013708 (2011). This is the first study to show that FOXOs not only act as tumour suppressor but also promote tumorigenesis.<\/b><\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature<\/i> 598<\/b>, 473\u2013478 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sullivan, L. B. & Chandel, N. S. Mitochondrial reactive oxygen species and cancer. Cancer Metab.<\/i> 2<\/b>, 17 (2014).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kensler, T. W. & Wakabayashi, N. Nrf2: friend or foe for chemoprevention. Carcinogenesis<\/i> 31<\/b>, 90\u201399 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer<\/i> 12<\/b>, 564\u2013571 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    O\u2019Reilly, D. R. p53 and transformation by SV40. Biol. Cell<\/i> 57<\/b>, 187\u2013196 (1986).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer<\/i> 20<\/b>, 471\u2013480 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J.<\/i> 349<\/b>, 629\u2013634 (2000).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol.<\/i> 156<\/b>, 817\u2013828 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, F. et al. Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc. Natl Acad. Sci. USA<\/i> 109<\/b>, 6078\u20136083 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, F. et al. Synergistic interplay between promoter recognition and CBP\/p300 coactivator recruitment by FOXO3a. ACS Chem. Biol.<\/i> 4<\/b>, 1017\u20131027 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Feringa, F. M. et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat. Commun.<\/i> 7<\/b>, 12618 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chin, C. F. & Yeong, F. M. Safeguarding entry into mitosis: the antephase checkpoint. Mol. Cell Biol.<\/i> 30<\/b>, 22\u201332 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Shats, I. et al. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res.<\/i> 73<\/b>, 6056\u20136067 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Krenning, L., Feringa, F. M., Shaltiel, I. A., van den Berg, J. & Medema, R. H. Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol. Cell<\/i> 55<\/b>, 59\u201372 (2014).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Krenning, L., van den Berg, J. & Medema, R. H. Life or death after a break: what determines the choice. Mol. Cell<\/i> 76<\/b>, 346\u2013358 (2019).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer<\/i> 20<\/b>, 74\u201388 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Rim, E. Y., Clevers, H. & Nusse, R. The wnt pathway: from signaling mechanisms to synthetic modulators. Annu. Rev. Biochem.<\/i> 91<\/b>, 571\u2013598 (2022).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Daniels, D. L. & Weis, W. I. Beta-catenin directly displaces Groucho\/TLE repressors from Tcf\/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol.<\/i> 12<\/b>, 364\u2013371 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hoogeboom, D. et al. Interaction of FOXO with beta-catenin inhibits beta-catenin\/T cell factor activity. J. Biol. Chem.<\/i> 283<\/b>, 9224\u20139230 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Almeida, M., Han, L., Martin-Millan, M., O\u2019Brien, C. A. & Manolagas, S. C. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem.<\/i> 282<\/b>, 27298\u201327305 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Liu, H. et al. Wnt signaling regulates hepatic metabolism. Sci. Signal.<\/i> 4<\/b>, ra6 (2011).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Shi, T., van Soest, D. M. K., Polderman, P. E., Burgering, B. M. T. & Dansen, T. B. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic. Biol. Med.<\/i> 172<\/b>, 298\u2013311 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Fuentes-Lemus, E. & Davies, M. J. Effect of crowding, compartmentalization and nanodomains on protein modification and redox signaling \u2014 current state and future challenges. Free Radic. Biol. Med.<\/i> 196<\/b>, 81\u201392 (2023).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem.<\/i> 86<\/b>, 715\u2013748 (2017).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Marabelli, C., Marrocco, B. & Mattevi, A. The growing structural and functional complexity of the LSD1\/KDM1A histone demethylase. Curr. Opin. Struct. Biol.<\/i> 41<\/b>, 135\u2013144 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bai, J. et al. Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. Proc. Natl Acad. Sci. USA<\/i> 117<\/b>, 4169\u20134179 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yoshida, K., Yamaguchi, T., Natsume, T., Kufe, D. & Miki, Y. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat. Cell Biol.<\/i> 7<\/b>, 278\u2013285 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hopkins, B. L. et al. A peroxidase peroxiredoxin 1-specific redox regulation of the novel FOXO3 microRNA target let-7. Antioxid. Redox Signal.<\/i> 28<\/b>, 62\u201377 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kong, H. & Chandel, N. S. Regulation of redox balance in cancer and T cells. J. Biol. Chem.<\/i> 293<\/b>, 7499\u20137507 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bansal, A. et al. Transcriptional regulation of Caenorhabditis elegans<\/i> FOXO\/DAF-16 modulates lifespan. Longev. Healthspan<\/i> 3<\/b>, 5 (2014).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell<\/i> 11<\/b>, 859\u2013871 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n