{"id":266809,"date":"2023-11-10T19:00:00","date_gmt":"2023-11-11T00:00:00","guid":{"rendered":"https:\/\/platohealth.ai\/identification-and-characterization-of-glycolate-oxidase-gene-family-in-garden-lettuce-lactuca-sativa-cv-salinas-and-its-response-under-various-biotic-abiotic-and-developmental\/"},"modified":"2023-11-12T02:30:52","modified_gmt":"2023-11-12T07:30:52","slug":"identification-and-characterization-of-glycolate-oxidase-gene-family-in-garden-lettuce-lactuca-sativa-cv-salinas-and-its-response-under-various-biotic-abiotic-and-developmental","status":"publish","type":"post","link":"https:\/\/platohealth.ai\/identification-and-characterization-of-glycolate-oxidase-gene-family-in-garden-lettuce-lactuca-sativa-cv-salinas-and-its-response-under-various-biotic-abiotic-and-developmental\/","title":{"rendered":"Identification and characterization of Glycolate oxidase gene family in garden lettuce (Lactuca sativa cv. \u2018Salinas\u2019) and its response under various biotic, abiotic, and developmental stresses – Scientific Reports","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
<\/div>\n
  • \n

    Aderinola, O. & Kusemiju, V. Heavy metals concentration in Garden lettuce (Lactuca sativa<\/i> L.) grown along Badagry expressway, Lagos. Nigeria. Transnatl. J. Sci. Technol.<\/i> 2<\/b>, 115\u2013130 (2012).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Shatilov, M., Razin, A., & Ivanova, M. Analysis of the world lettuce market.<\/i> Paper presented at the IOP Conference Series: Earth and Environmental Science (2019).<\/p>\n<\/li>\n

  • \n

    Hasan, M., Tahsin, A., Islam, M., Ali, M. A. & Uddain, J. Growth and yield of lettuce (Lactuca sativa<\/i> L.) influenced as nitrogen fertilizer and plant spacing. J. Agric. Vet. Sci.<\/i> 10<\/b>, 62\u201371 (2017).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Pink, D. & Keane, E. M. Lettuce: Lactuca sativa<\/i> L. In Genetic Improvement of Vegetable Crops<\/i> 543\u2013571 (Elsevier, 1993).<\/p>\n

    Chapter<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Park, S., Shi, A. & Mou, B. Genome-wide identification and expression analysis of the CBF\/DREB1 gene family in lettuce. Sci. Rep.<\/i> 10<\/b>, 1\u201314 (2020).<\/p>\n

    CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Koike, S. T., Gladders, P. & Paulus, A. O. Vegetable Diseases: A Color Handbook<\/i> (Gulf Professional Publishing, 2007).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Fertet, A. et al.<\/i> Sequence of the mitochondrial genome of Lactuca virosa<\/i> suggests an unexpected role in Lactuca sativa\u2019s<\/i> evolution. Front. Plant Sci.<\/i> 12<\/b>, 697136 (2021).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Simko, I. et al.<\/i> Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce. Sci. Rep.<\/i> 3<\/b>, 1\u201310 (2013).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Reyes-Chin-Wo, S. et al.<\/i> Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun.<\/i> 8<\/b>, 1\u201311 (2017).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Thompson, R. C., Whitaker, T. W. & Kosar, W. F. Interspecific genetic relationships in Lactuca. J. Agric. Res.<\/i> 63<\/b>, 91\u2013107 (1941).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    G\u00f3mez, C. & Jim\u00e9nez, J. Effect of end-of-production high-energy radiation on nutritional quality of indoor-grown red-leaf lettuce. HortScience<\/i> 55<\/b>, 1055\u20131060 (2020).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Resh, H. M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower<\/i> (CRC Press, 2012).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhou, C. et al.<\/i> Light quality affected the growth and root organic carbon and autotoxin secretions of hydroponic lettuce. Plants<\/i> 9<\/b>, 1542 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Materska, M. et al.<\/i> Polyphenolic profiles in lettuce (Lactuca sativa<\/i> L.) after CaCl2<\/sub> treatment and cold storage. Eur. Food Res. Technol.<\/i> 245<\/b>, 733\u2013744 (2019).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Nicolle, C. et al.<\/i> Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr.<\/i> 23<\/b>, 605\u2013614 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Jongen, W. Improving the Safety of Fresh Fruit and Vegetables<\/i> (Elsevier, 2005).<\/p>\n

    Book<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Rojas, C. M. et al.<\/i> Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana<\/i> and Arabidopsis. Plant Cell<\/i> 24<\/b>, 336\u2013352 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Foyer, C. H., Bloom, A. J., Queval, G. & Noctor, G. Photorespiratory metabolism: Genes, mutants, energetics, and redox signaling. Ann. Rev. Plant Boil.<\/i> 60<\/b>, 455\u2013484 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Florian, A., Ara\u00fajo, W. & Fernie, A. New insights into photorespiration obtained from metabolomics. Plant Biol.<\/i> 15<\/b>, 656\u2013666 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wingler, A., Lea, P. J., Quick, W. P. & Leegood, R. C. Photorespiration: Metabolic pathways and their role in stress protection. Philos. Trans. Roy. Soc. Lond. Ser. B Biol. Sci.<\/i> 355<\/b>, 1517\u20131529 (2000).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Reumann, S., Ma, C., Lemke, S. & Babujee, L. AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol.<\/i> 136<\/b>, 2587\u20132608 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Xu, Y.-P., Yang, J. & Cai, X.-Z. Glycolate oxidase gene family in Nicotiana benthamiana<\/i>: Genome-wide identification and functional analyses in disease resistance. Sci. Rep.<\/i> 8<\/b>, 1\u201311 (2018).<\/p>\n

    ADS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Rojas, C. M. & Mysore, K. S. Glycolate oxidase is an alternative source for H2<\/sub>O2<\/sub> production during plant defense responses and functions independently from NADPH oxidase. Plant Signal. Behav.<\/i> 7<\/b>, 752\u2013755 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhang, Z. et al.<\/i> Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS One<\/i> 7<\/b>, e39658 (2012).<\/p>\n

    Article<\/a>  ADS<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Lin, C. C. & Kao, C. H. Effect of NaCl stress on H2<\/sub>O2<\/sub> metabolism in rice leaves. Plant Growth Regul.<\/i> 30<\/b>, 151\u2013155 (2000).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Moran, J. F. et al.<\/i> Drought induces oxidative stress in pea plants. Planta<\/i> 194<\/b>, 346\u2013352 (1994).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Xu, H. et al.<\/i> Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J. Exp. Bot.<\/i> 60<\/b>, 1799\u20131809 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chern, M., Bai, W., Chen, X., Canlas, P. E. & Ronald, P. C. Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice. PeerJ<\/i> 1<\/b>, e28 (2013).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P. & Brutnell, T. P. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol.<\/i> 149<\/b>, 195\u2013204 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kachroo, A. et al.<\/i> Induction of H2<\/sub>O2<\/sub> in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res.<\/i> 12<\/b>, 577\u2013586 (2003).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yu, L. et al.<\/i> Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J. Exp. Bot.<\/i> 61<\/b>, 1625\u20131634 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Foster, J., Kim, H. U., Nakata, P. A. & Browse, J. A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis. Plant Cell<\/i> 24<\/b>, 1217\u20131229 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sun, G. et al.<\/i> The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea<\/i>. World J. Microbiol. Biotechnol.<\/i> 35<\/b>, 36 (2019).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Williams, B., Kabbage, M., Kim, H.-J., Britt, R. & Dickman, M. B. Tipping the balance: Sclerotinia sclerotiorum<\/i> secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog.<\/i> 7<\/b>, e1002107 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sinha, S. & Cossins, E. The importance of glyoxylate in amino acid biosynthesis in plants. Biochem. J.<\/i> 96<\/b>, 254\u2013261 (1965).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Xu, H.-W. et al.<\/i> Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J. Exp. Bot.<\/i> 57<\/b>, 1899\u20131908 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Li, W., Xu, Y.-P., Yang, J., Chen, G.-Y. & Cai, X.-Z. Hydrogen peroxide is indispensable to Xanthomonas oryzae<\/i> pv. oryzae-induced hypersensitive response and nonhost resistance in Nicotiana benthamiana<\/i>. Austral. Plant Pathol.<\/i> 44<\/b>, 611\u2013617 (2015).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Pastor, V. et al.<\/i> Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis. Mol. Plant\u2013Microbe Interact.<\/i> 26<\/b>, 1334\u20131344 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Scheler, C., Durner, J. & Astier, J. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol.<\/i> 16<\/b>, 534\u2013539 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Suzuki, N. et al.<\/i> Respiratory burst oxidases: The engines of ROS signaling. Curr. Opin. Plant Biol.<\/i> 14<\/b>, 691\u2013699 (2011).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Skelly, M. J. & Loake, G. J. Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance. Antioxidants Redox Signal.<\/i> 19<\/b>, 990\u2013997 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Choi, K. Y., Paek, K. Y. & Lee, Y. B. Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory. In Transplant Production in the 21st Century<\/i> 166\u2013171 (Springer, 2000).<\/p>\n

    Chapter<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Thompson, H. C., Langhans, R. W., Both, A.-J. & Albright, L. D. Shoot and root temperature effects on lettuce growth in a floating hydroponic system. J. Am. Soc. Horticult. Sci.<\/i> 123<\/b>, 361\u2013364 (1998).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytologist<\/i> 203<\/b>, 32\u201343 (2014).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhou, S., Chen, F.-C., Nahashon, S. & Chen, T. Cloning and characterization of glycolate oxidase and NADH-dependent hydropyruvate reductase genes in Pachysandra terminalis<\/i>. HortScience<\/i> 41<\/b>, 1226\u20131230 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sunil, B., Saini, D., Bapatla, R. B., Aswani, V. & Raghavendra, A. S. Photorespiration is complemented by cyclic electron flow and the alternative oxidase pathway to optimize photosynthesis and protect against abiotic stress. Photosynth. Res.<\/i> 139<\/b>, 67\u201379 (2019).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Gauslaa, Y. & Solhaug, K. High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria<\/i>\u2014Interactions of irradiance, exposure duration and high temperature. J. Exp. Bot.<\/i> 50<\/b>, 697\u2013705 (1999).<\/p>\n

    CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chen, Z. et al.<\/i> Inflorescence development and the role of LsFT in regulating bolting in lettuce (Lactuca sativa<\/i> L.). Front. Plant Sci.<\/i> 8<\/b>, 2248 (2018).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sarkar, U. & Choudhuri, M. Glycolate content, glycolate oxidase and catalase activity in intact sunflower plant during ageing and development. Biochemie und Physiologie der Pflanzen<\/i> 175<\/b>, 23\u201328 (1980).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hu, W. et al.<\/i> Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf.<\/i> 98<\/b>, 303\u2013309 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Baldantoni, D., Morra, L., Zaccardelli, M. & Alfani, A. Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol. Environ. Saf.<\/i> 123<\/b>, 89\u201394 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Sun, G., Wang, Y., Wei, X., Xiao, Y., Xu, X., & Tang, Y. Effects of exogenous indole-3-acetic acid on the photosynthesis characteristics of lettuce under cadmium stress. Paper Presented at the E3S Web of Conferences (2019).<\/p>\n<\/li>\n

  • \n

    Gonzalez, N., Vanhaeren, H. & Inz\u00e9, D. Leaf size control: Complex coordination of cell division and expansion. Trends Plant Sci.<\/i> 17<\/b>, 332\u2013340 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Ann. Rev. Plant Biol.<\/i> 61<\/b>, 235\u2013261 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cheng, Y.-L. & Tu, S.-L. Alternative splicing and cross-talk with light signaling. Plant Cell Physiol.<\/i> 59<\/b>, 1104\u20131110 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Timm, S. & Hagemann, M. Photorespiration\u2014How is it regulated and how does it regulate overall plant metabolism?. J. Exp. Bot.<\/i> 71<\/b>, 3955\u20133965 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yang, Z. et al.<\/i> Systematic identification and analysis of light-responsive circular RNA and co-expression networks in lettuce (Lactuca sativa<\/i>). G3 Genes Genom. Genet.<\/i> 10<\/b>, 2397\u20132410 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Boddy, L. Pathogens of autotrophs. In The Fungi<\/i> 245\u2013292 (Academic Press, 2016).<\/p>\n

    Chapter<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Mieslerova, B., Lebeda, A., Petr\u017eelov\u00e1, I. & Korbelova, P. Incidence of lettuce downy mildew (Bremia lactucae<\/i>) and powdery mildew (Golovinomyces cichoracearum<\/i>) in natural populations of prickly lettuce (Lactuca serriola<\/i>). Plant Protect. Sci.<\/i> 49<\/b>, S24\u2013S32 (2013).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Fan, J. & Doerner, P. Genetic and molecular basis of nonhost disease resistance: Complex, yes; silver bullet, no. Curr. Opinion Plant Biol.<\/i> 15<\/b>, 400\u2013406 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Lebeda, A. & Petr\u017eelov\u00e1, I. Variation and distribution of virulence phenotypes of Bremia lactucae<\/i> in natural populations of Lactuca serriola<\/i>. Plant Pathol.<\/i> 53<\/b>, 316\u2013324 (2004).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Lebeda, A., Sedl\u00e1\u0159ov\u00e1, M., Pet\u0159ivalsk\u00fd, M. & Prokopov\u00e1, J. Diversity of defence mechanisms in plant\u2013oomycete interactions: A case study of Lactuca spp. and Bremia lactucae<\/i>. Eur. J. Plant Pathol.<\/i> 122<\/b>, 71\u201389 (2008).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Carbone, F. et al.<\/i> Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea<\/i> L. transcriptome. PLoS One<\/i> 14<\/b>, e0221460. https:\/\/doi.org\/10.1371\/journal.pone.0221460<\/a> (2019).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Samad, A. F. A. MicroRNA and transcription factor: Key players in plant regulatory network. Front. Plant Sci.<\/i> 8<\/b>, 565 (2017).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Spanudakis, E. The role of microRNAs in the control of flowering time. J. Exp. Bot.<\/i> 2<\/b>, 365\u2013380 (2014).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Terzi, L. & Simpson, G. Regulation of flowering time by RNA processing. Nuclear Pre-mRNA Process. Plants<\/i> 25<\/b>, 201\u2013218 (2008).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Lu, Y. et al.<\/i> Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice. Physiologia Plantarum<\/i> 150<\/b>, 463\u2013476 (2014).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L. & Foyer, C. H. Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration?. Ann. Bot.<\/i> 89<\/b>, 841\u2013850 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    M\u00f8ller, I. M., Jensen, P. E. & Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol.<\/i> 58<\/b>, 459\u2013481 (2007).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Soldatenko, A. et al.<\/i> The economy of vegetable growing: The state and the present. Russ. Veg.<\/i> 5<\/b>, 63\u201368 (2018).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Koralewski, T. E. & Krutovsky, K. V. Evolution of exon\u2013intron structure and alternative splicing. PLoS One<\/i> 6<\/b>, e18055. https:\/\/doi.org\/10.1371\/journal.pone.0018055<\/a> (2011).<\/p>\n

    Article<\/a>  ADS<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chen, R. & Jeong, S.-S. Functional prediction: Identification of protein orthologs and paralogs. Protein Sci.<\/i> 9<\/b>, 2344\u20132353 (2000).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science<\/i> 278<\/b>, 631\u2013637 (1997).<\/p>\n

    Article<\/a>  ADS<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhang, Y., Gao, P. & Yuan, J. S. Plant protein-protein interaction network and interactome. Curr. Genom.<\/i> 11<\/b>, 40\u201346 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Engqvist, M. K., E\u00dfer, C., Maier, A., Lercher, M. J. & Maurino, V. G. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion<\/i> 19<\/b>, 275\u2013281 (2014).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Engqvist, M. K. et al.<\/i> GLYCOLATE OXIDASE3, a glycolate oxidase homolog of yeast L-lactate cytochrome c oxidoreductase, supports L-lactate oxidation in roots of Arabidopsis. Plant Physiol.<\/i> 169<\/b>, 1042\u20131061 (2015).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bondarenko, V. S. & Gelfand, M. S. Evolution of the exon\u2013intron structure in ciliate genomes. PLoS One<\/i> 11<\/b>, e0161476. https:\/\/doi.org\/10.1371\/journal.pone.0161476<\/a> (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Panchy, N., Lehti-Shiu, M. & Shiu, S.-H. Evolution of gene duplication in plants. Plant Physiol.<\/i> 171<\/b>, 2294\u20132316 (2016).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Moore, R. C. & Purugganan, M. D. The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Boil.<\/i> 8<\/b>, 122\u2013128 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Taylor, J. S. & Raes, J. Duplication and divergence: The evolution of new genes and old ideas. Annu. Rev. Genet.<\/i> 38<\/b>, 615\u2013643 (2004).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Xie, T. et al.<\/i> Genome-wide analysis of the lateral organ boundaries domain gene family in Brassica napus<\/i>. Genes<\/i> 11<\/b>, 280 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hurst, L. D. The Ka\/Ks ratio: Diagnosing the form of sequence evolution. TRENDS Genet.<\/i> 9<\/b>, 486\u2013487 (2002).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evolut.<\/i> 15<\/b>, 496\u2013503 (2000).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Morgan, C. C., Loughran, N. B., Walsh, T. A., Harrison, A. J. & O\u2019Connell, M. J. Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins. BMC Evolut. Boil.<\/i> 10<\/b>, 39 (2010).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhang, Y., Gao, P. & Yuan, J. S. Plant protein\u2013protein interaction network and interactome. Curr. Genom.<\/i> 11<\/b>, 40\u201346 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    McMillan, D. G. et al.<\/i> Protein\u2013protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J. Am. Chem. Soc.<\/i> 135<\/b>, 10550\u201310556 (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Roberts, M. R. Does GABA act as a signal in plants? Hints from molecular studies: Hints from molecular studies. Plant Signal. Behav.<\/i> 2<\/b>, 408\u2013409 (2007).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Maurino, V. G., & Engqvist, M. K. 2-Hydroxy acids in plant metabolism. The Arabidopsis book\/American Society of Plant Biologists<\/i> 13<\/b> (2015).<\/p>\n<\/li>\n

  • \n

    Tolbert, N., Oeser, A., Kisaki, T., Hageman, R. & Yamazaki, R. Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. Biol. Chem.<\/i> 243<\/b>, 5179\u20135184 (1968).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Vishwakarma, A., Tetali, S. D., Selinski, J., Scheibe, R. & Padmasree, K. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana<\/i>. Ann. Bot.<\/i> 116<\/b>, 555\u2013569 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Arnao, M. B. & Hern\u00e1ndez-Ruiz, J. Melatonin: plant growth regulator and\/or biostimulator during stress?. Trends Plant Sci.<\/i> 19<\/b>, 789\u2013797 (2014).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hasan, M. K. et al.<\/i> Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum<\/i> L. Front. Plant Sci.<\/i> 6<\/b>, 601 (2015).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Moya-Garzon, M. D. et al.<\/i> New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. Eur. J. Med. Chem.<\/i> 237<\/b>, 114396 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cohen, Y., Rubin, A. E. & Kilfin, G. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-\u03b2-amino-butyric acid (BABA). Eur. J. Plant Pathol.<\/i> 126<\/b>, 553\u2013573 (2010).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Xia, K., Pan, X., Chen, H., Xu, X. & Zhang, M. Rice miR168a-5p regulates seed length, nitrogen allocation and salt tolerance by targeting OsOFP3, OsNPF2. 4 and OsAGO1a, respectively. J. Plant Physiol.<\/i> 280<\/b>, 153905 (2023).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Zhou, J. et al.<\/i> CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. Plant Biotechnol. J.<\/i> 20<\/b>, 310\u2013322 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Vaucheret, H. AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS One<\/i> 4<\/b>, e6442 (2009).<\/p>\n

    Article<\/a>  ADS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Rhoades, M. W. et al.<\/i> Prediction of plant microRNA targets. Cell<\/i> 110<\/b>, 513\u2013520 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Xie, Z., Kasschau, K. D. & Carrington, J. C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol.<\/i> 13<\/b>, 784\u2013789 (2003).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Xie, Z. et al.<\/i> Expression of Arabidopsis MIRNA genes. Plant Physiol.<\/i> 138<\/b>, 2145\u20132154 (2005).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Vaucheret, H., Mallory, A. C. & Bartel, D. P. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol. Cell<\/i> 22<\/b>, 129\u2013136 (2006).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Schmid, M. et al.<\/i> A gene expression map of Arabidopsis thaliana<\/i> development. Nat. Genet.<\/i> 37<\/b>, 501\u2013506 (2005).<\/p>\n

    Article<\/a>  MathSciNet<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Winter, D. et al.<\/i> An \u201celectronic fluorescent pictograph\u201d browser for exploring and analyzing large-scale biological data sets. PLoS One<\/i> 2<\/b>, e718 (2007).<\/p>\n

    Article<\/a>  ADS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Pick, T. R. et al.<\/i> PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc. Natl. Acad. Sci.<\/i> 110<\/b>, 3185\u20133190 (2013).<\/p>\n

    Article<\/a>  ADS<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cai, X. et al.<\/i> Expression analysis of oxalate metabolic pathway genes reveals oxalate regulation patterns in spinach. Molecules<\/i> 23<\/b>, 1286 (2018).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Collins, K. et al.<\/i> SpinachBase: A central portal for spinach genomics. Database<\/i> 2019<\/b>, 72 (2019).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Goodstein, D. et al.<\/i> Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res.<\/i> 40<\/b>, D1178\u2013D1186 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Goodstein, D., et al. Phytozome Comparative Plant Genomics Portal (2014).<\/p>\n<\/li>\n

  • \n

    Marchler-Bauer, A. et al.<\/i> CDD: NCBI\u2019s conserved domain database. Nucleic Acids Res.<\/i> 43<\/b>, D222\u2013D226 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Lu, S. et al.<\/i> CDD\/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res.<\/i> 48<\/b>, D265\u2013D268. https:\/\/doi.org\/10.1093\/nar\/gkz991<\/a> (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Gasteiger, E., et al. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook<\/i> 571\u2013607. Springer (2005).<\/p>\n<\/li>\n

  • \n

    Bernhofer, M. et al.<\/i> Nlsdb\u2014Major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res.<\/i> 46<\/b>, 503\u2013508 (2018).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Nair, R., Carter, P. & Rost, B. NLSdb: Database of nuclear localization signals. Nucleic Acids Res.<\/i> 31<\/b>, 397\u2013399 (2003).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO Rep.<\/i> 1<\/b>, 411\u2013415 (2000).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Horton, P., Park, K.-J., Obayashi, T., & Nakai, K. Protein subcellular localization prediction with WoLF PSORT.<\/i> Paper presented at the Proceedings of the 4th Asia-Pacific Bioinformatics Conference<\/i> (2006).<\/p>\n<\/li>\n

  • \n

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.<\/i> 22<\/b>, 4673\u20134680 (1994).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protocol. Bioinform.<\/i> 1<\/b>, 2\u20133 (2003).<\/p>\n

    Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Boil. Evolut.<\/i> 35<\/b>, 1547\u20131549. https:\/\/doi.org\/10.1093\/molbev\/msy096<\/a> (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Boil. Evolut.<\/i> 38<\/b>, 3022\u20133027 (2021).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Guo, A.-Y., Zhu, Q.-H., Chen, X. & Luo, J.-C. GSDS: A gene structure display server. Yi Chuan Hereditas<\/i> 29<\/b>, 1023\u20131026 (2007).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Hu, B. et al.<\/i> GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics<\/i> 31<\/b>, 1296\u20131297. https:\/\/doi.org\/10.1093\/bioinformatics\/btu817<\/a> (2015).<\/p>\n

    Article<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bailey, T. L. et al.<\/i> MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res.<\/i> 37<\/b>, W202\u2013W208 (2009).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res.<\/i> 43<\/b>, W39\u2013W49 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chen, C. et al.<\/i> TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant<\/i> 13<\/b>, 1194\u20131202 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Brown, G. R. et al.<\/i> Gene: a gene-centered information resource at NCBI. Nucleic Acids Res.<\/i> 43<\/b>, D36\u2013D42 (2015).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Johnson, M. et al.<\/i> NCBI BLAST: A better web interface. Nucleic Acids Res.<\/i> 36<\/b>, W5\u2013W9 (2008).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, Y. et al.<\/i> MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res.<\/i> 40<\/b>, e49\u2013e49 (2012).<\/p>\n

    Article<\/a>  ADS<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wang, Y., Li, J. & Paterson, A. H. MCScanX-transposed: Detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics<\/i> 29<\/b>, 1458\u20131460. https:\/\/doi.org\/10.1093\/bioinformatics\/btt150<\/a> (2013).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet.<\/i> 13<\/b>, 59\u201369 (2012).<\/p>\n

    Article<\/a>  CAS<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Bi\u0142as, R., Szafran, K., Hnatuszko-Konka, K. & Kononowicz, A. K. Cis-regulatory elements used to control gene expression in plants. Plant Cell Tissue Organ Cult.<\/i> 127<\/b>, 269\u2013287 (2016).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    B\u00fclow, L., & Hehl, R. Bioinformatic identification of conserved cis-sequences in coregulated genes. In Plant Synthetic Promoters<\/i> 233\u2013245. Springer (2016).<\/p>\n<\/li>\n

  • \n

    Lescot, M. et al.<\/i> PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res.<\/i> 30<\/b>, 325\u2013327 (2002).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Chen, C., Chen, H., He, Y., & Xia, R. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv<\/i> 289660 (2018).<\/p>\n<\/li>\n

  • \n

    Heng, H., Guoqiang, H., Jin, S., Fengli, Z. & Dabing, Z. Bioinformatics analysis for piezo in rice. Reprod. Breed.<\/i> 1<\/b>, 108\u2013113 (2021).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Tong, M. et al.<\/i> Identification and functional analysis of the CorA\/MGT\/MRS2-type magnesium transporter in banana. PLoS One<\/i> 15<\/b>, e0239058 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Szklarczyk, D. et al.<\/i> The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res.<\/i> 39<\/b>, D561\u2013D568 (2010).<\/p>\n

    Article<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Szklarczyk, D. et al.<\/i> STRING v11: Protein\u2013protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res.<\/i> 47<\/b>, D607\u2013D613 (2019).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Yu, X. et al.<\/i> Comparative analysis of Italian Lettuce (Lactuca sativa<\/i> L. var. ramose) transcriptome profiles reveals the molecular mechanism on exogenous melatonin preventing cadmium toxicity. Genes<\/i> 13<\/b>, 955 (2022).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Luo, C. et al.<\/i> LsAP2 regulates leaf morphology by inhibiting CIN-like TCP transcription factors and repressing LsKAN2 in lettuce. Horticult. Res.<\/i> 8<\/b>, 24 (2021).<\/p>\n

    Article<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Dai, X., Zhuang, Z. & Zhao, P. X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res.<\/i> 46<\/b>, W49\u2013W54 (2018).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  PubMed Central<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n

  • \n

    Guo, Z. et al.<\/i> PmiREN: A comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res.<\/i> 48<\/b>, D1114\u2013D1121 (2020).<\/p>\n

    Article<\/a>  CAS<\/a>  PubMed<\/a>  Google Scholar<\/a>  <\/p>\n<\/li>\n