Wingless strain created using binary transgenic CRISPR/Cas9 alleviates concerns about mass rearing of Hermetia illucens

  • Nyakeri, E. M., Ogola, H. J. O., Ayieko, M. A. & Amimo, F. A. Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes. J. Insects Food Feed 3, 193–202 (2017).

    Article 

    Google Scholar
     

  • Newton, L., Craig, S., Wes D, W., Gary, B. & Robert, D. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. J. Korean Entomol. Appl. Sci. 36, 17 (2005).


    Google Scholar
     

  • Diener, S., Studt Solano, N. M., Roa Gutiérrez, F., Zurbrügg, C. & Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass-. Valor. 2, 357–363 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bulak, P. et al. Hermetia illucens as a new and promising species for use in entomoremediation. Sci. Total Environ. 633, 912–919 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag 31, 1316–1320 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R. & Khanal, S. K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energ. 98, 197–202 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Siddiqui, S. A. et al. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag 140, 1–13 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Spranghers, T. et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 97, 2594–2600 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Hermetia illucens L. larvae–associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure. Microb. Biotechnol. 15, 2631–2644 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, X. et al. Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. J. Environ. Manag. 307, 114539 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z. et al. Mitigation of antibiotic resistome in swine manure by black soldier fly larval conversion combined with composting. Sci. Total Environ. 879, 163065 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kettenring, K. M., Mercer, K. L., Reinhardt Adams, C. & Hines, J. Application of genetic diversity-ecosystem function research to ecological restoration. J. Appl. Ecol. 51, 339–348 (2014).

    Article 

    Google Scholar
     

  • Tomberlin, J. K. & Sheppard, D. C. Lekking behavior of the black soldier fly (Diptera: Stratiomyidae). Fla. Entomol. 84, 729–730 (2001).

    Article 

    Google Scholar
     

  • Giunti, G., Campolo, O., Laudani, F. & Palmeri, V. Male courtship behaviour and potential for female mate choice in the black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae). Entomol. Gen. 38, 29–46 (2018).

    Article 

    Google Scholar
     

  • Tomberlin, J. K. & Sheppard, D. C. Factors influencing mating and oviposition of black soldier flies (Diptera: Stratiomyidae) in a colony. J. Entomol. Sci. 37, 345–352 (2002).


    Google Scholar
     

  • Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, S. et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res 30, 50–60 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Generalovic, T. N. et al. A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia illucens L.). G3 (Bethesda). 11, jkab085 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou, Z. et al. Establishment of highly efficient transgenic system for black soldier fly (Hermetia illucens). Insect Sci. 30, 888–900 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Port, F. et al. A large-scale resource for tissue-specific CRISPR mutagenesis in. Drosoph. Elife 9, 1–20 (2020).


    Google Scholar
     

  • Chen, X. & Palli, S. R. Development of multiple transgenic CRISPR/Cas9 methods for genome editing in the fall armyworm, Spodoptera frugiperda. J. Pest Sci. 96, 1637–1650 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti. Proc. Natl Acad. Sci. USA 114, E10540–E10549 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proc. R. Soc. B. 282, 20150513 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. Toward a CRISPR-Cas9-Based Gene Drive in the Diamondback Moth Plutella xylostella. Cris. J. 5, 224–236 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S., Li, S. & Li, X.-J. Shortening the Half-Life of Cas9 Maintains Its Gene Editing Ability and Reduces Neuronal Toxicity. Cell Rep. 25, 2653–2659 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poe, A. R. et al. Robust CRISPR/Cas9-mediated tissue-specific mutagenesis reveals gene redundancy and perdurance in. Drosoph. Genet. 211, 459–472 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gratz, S. J. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in. Drosoph. Genet. 196, 961–971 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Identification of a germline-expression promoter for genome editing in Bombyx mori. Insect Sci. 26, 991–999 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hazelrigg, T., Levis, R. & Rubin, G. M. Transformation of white locus DNA in Drosophila: Dosage compensation, zeste interaction, and position effects. Cell 36, 469–481 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackenzie, S. M. et al. Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochim. Biophys. Acta 1419, 173–185 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, X. et al. CRISPR/Cas9-mediated knockout of the eye pigmentation gene white leads to alterations in colour of head spots in the oriental fruit fly, Bactrocera dorsalis. Insect Mol. Biol. 28, 837–849 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choo, A., Crisp, P., Saint, R., O’Keefe, L. V. & Baxter, S. W. CRISPR/Cas9-mediated mutagenesis of the white gene in the tephritid pest Bactrocera tryoni. J. Appl. Entomol. 142, 52–58 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination. PLoS Genet 13, 1–17 (2017).

    Article 

    Google Scholar
     

  • Hammond, A. M. et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet 13, 1–16 (2017).

    Article 

    Google Scholar
     

  • Champer, J. et al. Reducing resistance allele formation in CRISPR gene drive. Proc. Natl Acad. Sci. USA 115, 5522–5527 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Huis, A. & Gasco, L. Insects as feed for livestock production: Insect farming for livestock feed has the potential to replace conventional feed. Science 379, 138–139 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Purkayastha, D. & Sarkar, S. Sustainable waste management using black soldier fly larva: a review. Int. J. Environ. Sci. Technol. 19, 12701–12726 (2022).

    Article 

    Google Scholar
     

  • Xu, H. J. et al. Two insulin receptors determine alternative wing morphs in planthoppers. Nature 519, 464–467 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207–230 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vellichirammal, N. N., Gupta, P., Hall, T. A. & Brisson, J. A. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proc. Natl Acad. Sci. USA 114, 1419–1423 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. A genomic inference of the White Plymouth Rock genealogy. Poult. Sci. 98, 5272–5280 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackay, I. J., Cockram, J., Howell, P. & Powell, W. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, X. et al. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. Nat. Commun. 12, 2960 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet 13, 1–18 (2017).

    Article 

    Google Scholar
     

  • Wang, C. & Lehmann, R. Nanos is the localized posterior determinant in. Drosoph. Cell 66, 637–647 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Berleth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1756 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simoni, A. et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat. Biotechnol. 38, 1054–1060 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Port, F., Chen, H. M., Lee, T. & Bullock, S. L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl Acad. Sci. USA 111, E2967–E2976 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, X. Y., Lu, W. J., Qiao, X. & Huang, J. Genome editing efficiency of four Drosophila suzukii endogenous U6 promoters. Insect Mol. Biol. 30, 420–426 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl Acad. Sci. USA 112, 3570–3575 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat. Commun. 10, 1–10 (2019).


    Google Scholar
     

  • Port, F. & Bullock, S. L. Augmenting CRISPR applications in Drosophila with tRNA- flanked Cas9 and Cpf1 sgRNAs. Nat. Methods 13, 852–854 (2016). Europe PMC Funders Group.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grevet, J. D. et al. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science 361, 285–290 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koreman, G. T. et al. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila. Proc. Natl Acad. Sci. USA 118, 1–10 (2021).

    Article 

    Google Scholar
     

  • Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, B. et al. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori. J. Biol. Chem. 292, 11659–11669 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar