
Nyakeri, E. M., Ogola, H. J. O., Ayieko, M. A. & Amimo, F. A. Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes. J. Insects Food Feed 3, 193–202 (2017).
Newton, L., Craig, S., Wes D, W., Gary, B. & Robert, D. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. J. Korean Entomol. Appl. Sci. 36, 17 (2005).
Diener, S., Studt Solano, N. M., Roa Gutiérrez, F., Zurbrügg, C. & Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass-. Valor. 2, 357–363 (2011).
Bulak, P. et al. Hermetia illucens as a new and promising species for use in entomoremediation. Sci. Total Environ. 633, 912–919 (2018).
Li, Q. et al. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag 31, 1316–1320 (2011).
Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R. & Khanal, S. K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energ. 98, 197–202 (2016).
Siddiqui, S. A. et al. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag 140, 1–13 (2022).
Spranghers, T. et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 97, 2594–2600 (2017).
Zhang, Y. et al. Hermetia illucens L. larvae–associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure. Microb. Biotechnol. 15, 2631–2644 (2022).
Luo, X. et al. Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. J. Environ. Manag. 307, 114539 (2022).
Zhao, Z. et al. Mitigation of antibiotic resistome in swine manure by black soldier fly larval conversion combined with composting. Sci. Total Environ. 879, 163065 (2023).
Kettenring, K. M., Mercer, K. L., Reinhardt Adams, C. & Hines, J. Application of genetic diversity-ecosystem function research to ecological restoration. J. Appl. Ecol. 51, 339–348 (2014).
Tomberlin, J. K. & Sheppard, D. C. Lekking behavior of the black soldier fly (Diptera: Stratiomyidae). Fla. Entomol. 84, 729–730 (2001).
Giunti, G., Campolo, O., Laudani, F. & Palmeri, V. Male courtship behaviour and potential for female mate choice in the black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae). Entomol. Gen. 38, 29–46 (2018).
Tomberlin, J. K. & Sheppard, D. C. Factors influencing mating and oviposition of black soldier flies (Diptera: Stratiomyidae) in a colony. J. Entomol. Sci. 37, 345–352 (2002).
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
Zhan, S. et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res 30, 50–60 (2020).
Generalovic, T. N. et al. A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia illucens L.). G3 (Bethesda). 11, jkab085 (2021).
Kou, Z. et al. Establishment of highly efficient transgenic system for black soldier fly (Hermetia illucens). Insect Sci. 30, 888–900 (2023).
Port, F. et al. A large-scale resource for tissue-specific CRISPR mutagenesis in. Drosoph. Elife 9, 1–20 (2020).
Chen, X. & Palli, S. R. Development of multiple transgenic CRISPR/Cas9 methods for genome editing in the fall armyworm, Spodoptera frugiperda. J. Pest Sci. 96, 1637–1650 (2023).
Li, M. et al. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti. Proc. Natl Acad. Sci. USA 114, E10540–E10549 (2017).
Li, Z. et al. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proc. R. Soc. B. 282, 20150513 (2015).
Xu, X. et al. Toward a CRISPR-Cas9-Based Gene Drive in the Diamondback Moth Plutella xylostella. Cris. J. 5, 224–236 (2022).
Yang, S., Li, S. & Li, X.-J. Shortening the Half-Life of Cas9 Maintains Its Gene Editing Ability and Reduces Neuronal Toxicity. Cell Rep. 25, 2653–2659 (2018).
Poe, A. R. et al. Robust CRISPR/Cas9-mediated tissue-specific mutagenesis reveals gene redundancy and perdurance in. Drosoph. Genet. 211, 459–472 (2019).
Gratz, S. J. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in. Drosoph. Genet. 196, 961–971 (2014).
Xu, J. et al. Identification of a germline-expression promoter for genome editing in Bombyx mori. Insect Sci. 26, 991–999 (2019).
Hazelrigg, T., Levis, R. & Rubin, G. M. Transformation of white locus DNA in Drosophila: Dosage compensation, zeste interaction, and position effects. Cell 36, 469–481 (1984).
Mackenzie, S. M. et al. Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochim. Biophys. Acta 1419, 173–185 (1999).
Bai, X. et al. CRISPR/Cas9-mediated knockout of the eye pigmentation gene white leads to alterations in colour of head spots in the oriental fruit fly, Bactrocera dorsalis. Insect Mol. Biol. 28, 837–849 (2019).
Choo, A., Crisp, P., Saint, R., O’Keefe, L. V. & Baxter, S. W. CRISPR/Cas9-mediated mutagenesis of the white gene in the tephritid pest Bactrocera tryoni. J. Appl. Entomol. 142, 52–58 (2018).
Xu, J. et al. Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination. PLoS Genet 13, 1–17 (2017).
Hammond, A. M. et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet 13, 1–16 (2017).
Champer, J. et al. Reducing resistance allele formation in CRISPR gene drive. Proc. Natl Acad. Sci. USA 115, 5522–5527 (2018).
van Huis, A. & Gasco, L. Insects as feed for livestock production: Insect farming for livestock feed has the potential to replace conventional feed. Science 379, 138–139 (2023).
Purkayastha, D. & Sarkar, S. Sustainable waste management using black soldier fly larva: a review. Int. J. Environ. Sci. Technol. 19, 12701–12726 (2022).
Xu, H. J. et al. Two insulin receptors determine alternative wing morphs in planthoppers. Nature 519, 464–467 (2015).
Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207–230 (1997).
Vellichirammal, N. N., Gupta, P., Hall, T. A. & Brisson, J. A. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proc. Natl Acad. Sci. USA 114, 1419–1423 (2017).
Guo, Y. et al. A genomic inference of the White Plymouth Rock genealogy. Poult. Sci. 98, 5272–5280 (2019).
Mackay, I. J., Cockram, J., Howell, P. & Powell, W. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34 (2021).
Feng, X. et al. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. Nat. Commun. 12, 2960 (2021).
Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet 13, 1–18 (2017).
Wang, C. & Lehmann, R. Nanos is the localized posterior determinant in. Drosoph. Cell 66, 637–647 (1991).
Berleth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1756 (1988).
Simoni, A. et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat. Biotechnol. 38, 1054–1060 (2020).
Port, F., Chen, H. M., Lee, T. & Bullock, S. L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl Acad. Sci. USA 111, E2967–E2976 (2014).
Ni, X. Y., Lu, W. J., Qiao, X. & Huang, J. Genome editing efficiency of four Drosophila suzukii endogenous U6 promoters. Insect Mol. Biol. 30, 420–426 (2021).
Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl Acad. Sci. USA 112, 3570–3575 (2015).
Zhang, Y. et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat. Commun. 10, 1–10 (2019).
Port, F. & Bullock, S. L. Augmenting CRISPR applications in Drosophila with tRNA- flanked Cas9 and Cpf1 sgRNAs. Nat. Methods 13, 852–854 (2016). Europe PMC Funders Group.
Grevet, J. D. et al. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science 361, 285–290 (2018).
Koreman, G. T. et al. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila. Proc. Natl Acad. Sci. USA 118, 1–10 (2021).
Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).
Zeng, B. et al. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori. J. Biol. Chem. 292, 11659–11669 (2017).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s42003-024-07254-7