
Wang, C., Yin, L., Zhang, L., Xiang, D. & Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010).
Phillips, M. Breath tests in medicine. Sci. Am. 267, 74–9 (1992). 1992.
Phillips, M. et al. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B 729, 75–88 (1999).
Fenske, J. D. & Paulson, S. E. Human breath emissions of VOCs. J. Air Waste Manag. Assoc. 49, 594–598 (1999).
Mathew, T. L., Pownraj, P., Abdulla, S. & Pullithadathil, B. Technologies for clinical diagnosis using expired human breath analysis. Diagnostics (Basel, Switzerland) 5, 27–60 (2015).
Righettoni, M., Amann, A. & Pratsinis, S. E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today 18, 163–171 (2015).
Zhou, X. R. et al. Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 29, 405–416 (2018).
Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceramics 7, 143–167 (2001).
Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B. & Habchi, R. A review on flexible gas sensors: from materials to devices. Sens. Actuators A Phys. 284, 209–231 (2018).
Alsyouri, H. M. & Lin, J. Y. S. Gas diffusion and microstructural properties of ordered mesoporous silica fibers. J. Phys. Chem. B 109, 13623–13629 (2005).
Jin, C. Q. et al. Influence of nanoparticle size on ethanol gas sensing performance of mesoporous alpha-Fe(2)O3 hollow spheres. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 224, 158–162 (2017).
Rout, C. S., Hegde, M. & Rao, C. N. R. H2S sensors based on tungsten oxide nanostructures. Sens. Actuators B Chem. 128, 488–493 (2008).
Wagner, T., Haffer, S., Weinberger, C., Klaus, D. & Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 42, 4036–4053 (2013). 2013.
Jang, J. S., Choi, S. J., Kim, S. J., Hakim, M. & Kim, I. D. Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26, 4740–4748 (2016).
Xu, H. et al. Mesoporous WO3 nanofibers with crystalline framework for high-performance acetone sensing. Front. Chem. 7, 266 (2019).
Yoon, J.-W. et al. Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater. 8, e244 (2016).
Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217 (2020).
Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).
Agarwal, P. B. et al. Flexible NO2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates. Flex. Print. Electron. 3, 035001 (2018).
Gao, Z. et al. Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res. 11, 511–519 (2018).
Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L. & Perkins, F. K. Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6, 1747–1751 (2006).
Zhao, J. J., Buldum, A., Han, J. & Lu, J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13, 195–200 (2002). Pii s0957-4484(02)30254-x.
Guo, S. Y., Hou, P. X., Zhang, F., Liu, C. & Cheng, H. M. Gas Sensors Based on Single-Wall Carbon Nanotubes. Molecules 27, 5381 (2022).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Xia, K. L., Wang, C. Y., Jian, M. Q., Wang, Q. & Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018).
Qiu, X. Y., Bouchiat, V., Colombet, D. & Ayela, F. Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip. Rsc Adv. 9, 3232–3238 (2019).
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).
Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D Appl. Phys. 43, 374009 (2010).
Kim, K. S. et al. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics. Sci. Rep. 7, 2462 (2017).
Singh, S. U. et al. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Microchim. Acta 189, 236 (2022).
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).
Singh, E., Meyyappan, M. & Nalwa, H. S. FlexiblE GRAPHENE-BASED WEARABLE GAS AND CHEMICAL SEnsors. ACS Appl. Mater. Interfaces 9, 34544–34586 (2017).
Ma, J. et al. Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv. 9, 075207 (2019).
Kim, Y. H. et al. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9, 10453–10460 (2015).
Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).
Sun, L. & Fugetsu, B. Mass production of graphene oxide from expanded graphite. Mater. Lett. 109, 207–210 (2013).
Li, N., Chen, X. D., Chen, X. P., Ding, X. & Li, X. Y. Subsecond response of humidity sensor based on graphene oxide quantum dots. IEEE Electron Device Lett. 36, 615–617 (2015).
Ahmadvand, H., Zad, A. I., Mohammadpour, R., Hosseini-Shokouh, S. H. & Asadian, E. Room temperature and high response ethanol sensor based on two dimensional hybrid nanostructures of WS2/GONRs. Sci. Rep. 10, 14799 (2020).
Duy, L. T. et al. Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Functional Mater. 26, 4329–4338 (2016).
Gao, X. F., Jang, J. & Nagase, S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114, 832–842 (2010).
Wang, G. X. et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008).
Pei, S. F. & Cheng, H. M. The reduction of graphene oxide. Carbon 50, 3210–3228 (2012).
Chen, X. W. et al. Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide. Sens. Actuators B Chem. 345, 130423 (2021).
Zhang, L. et al. Highly sensitive NH3 wireless sensor based on Ag-RGO composite operated at room-temperature. Sci. Rep. 9, 9942 (2019).
Zhang, F. Z. et al. A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsyst. Nanoeng. 8, 40 (2022).
Lin, J. et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, https://doi.org/10.1038/ncomms6714. (2014).
Parmeggiani, M. et al. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl. Mater. Interfaces 11, 33221–33230 (2019).
You, R. et al. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020).
Dimiev, A. M. et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano 7, 2773–2780 (2013).
Biswas, R. K., Vijayaraghavan, R. K., McNally, P., O’Connor, G. M. & Scully, P. Graphene growth kinetics for CO2 laser carbonization of polyimide. Mater. Lett. 307, 131097 (2022).
Li, G. J., Mo, X. Y., Law, W. C. & Chan, K. C. Wearable fluid capture devices for electrochemical sensing of sweat. ACS Appl. Mater. Interfaces 11, 238–243 (2019).
Abdulhafez, M., Tomaraei, G. N. & Bedewy, M. Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater. 4, 2973–2986 (2021).
Muzyka, K. & Xu, G. Laser-induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34, 574–589 (2022).
Yang, L. et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022).
Chyan, Y. et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018).
Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).
Xin, M., Li, J. A., Ma, Z., Pan, L. J. & Shi, Y. MXenes and their applications in wearable sensors. Front. Chem. 8, 297 (2020).
Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).
Pei, Y. Y. et al. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15, 3996–4017 (2021).
Reddy, M. S. B., Kailasa, S., Marupalli, B. C. G., Aich, S. & Sadasivuni, K. K. A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sensors 7, 2132–2163 (2022).
Li, X. et al. Room temperature VOCs sensing with termination-modified Ti3C2Tx MXene for wearable exhaled breath monitoring. Adv. Mater. Technol. 7, 2100872 (2022).
Xing, H. et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem. 361, 131704 (2022).
Ma, Z. et al. Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Lett. 18, 4570–4575 (2018).
Liu, C. H. et al. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B Chem. 261, 587–597 (2018).
Li, S. et al. Flexible ammonia sensor based on PEDOT:PSS/silver nanowire composite film for meat freshness monitoring. IEEE Electron Device Lett. 38, 975–978 (2017).
Khan, I. & Saeed, K. Nanoparticles: properties, applications and toxicities. Arabian J. Chem. 12, 908–931 (2019).
Koga, K. Electronic and catalytic effects of single-atom pd additives on the hydrogen sensing properties of Co3O4 nanoparticle films. ACS Appl. Mater. Interfaces 12, 20806–20823 (2020).
Rai, P., Kim, Y. S., Song, H. M., Song, M. K. & Yu, Y. T. The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem. 165, 133–142 (2012).
Marikutsa, A., Novikova, A., Rumyantseva, M., Khmelevsky, N. & Gaskov, A. Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC. Sens. Actuators B Chem. 326, 128980 (2021).
D’Arienzo, M. et al. One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem. Mater. 22, 4083–4089 (2010).
Kolmakov, A., Klenov, D. O., Lilach, Y., Stemmer, S. & Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005).
Kim, W., Jang, B., Lee, H.-S. & Lee, W. Reliability and selectivity of H-2 sensors composed of Pd Film nanogaps on an elastomeric substrate. Sens. Actuators B Chem. 224, 547–551 (2016).
Wang, M. & Feng, Y. Palladium-silver thin film for hydrogen sensing. Sens. Actuators B Chem. 123, 101–106 (2007).
Wolfe, D. B., Love, J. C., Paul, K. E., Chabinyc, M. L. & Whitesides, G. M. Fabrication of palladium-based microelectronic devices by microcontact printing. Appl. Phys. Lett. 80, 2222–2224 (2002).
McConnell, C. et al. Hydrogen sensors based on flexible carbon nanotube-palladium composite sheets integrated with ripstop fabric. ACS Omega 5, 487–497 (2020).
Xu, X. W., Wang, J. & Long, Y. C. Zeolite-based materials for gas sensors. Sensors 6, 1751–1764 (2006).
Della Gaspera, E. et al. Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties. J. Mater. Chem. 21, 4293–4300, (2011). 2011.
Shin, J. et al. Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23, 2357–2367 (2013).
Shao, F. et al. Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens. Actuators B Chem. 181, 130–135 (2013).
Miller, D. R., Akbar, S. A. & Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens.s Actuators B Chem. 204, 250–272 (2014).
Wang, Z., Tian, Z., Han, D. & Gu, F. Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO. ACS Appl. Mater. Interfaces 8, 5466–5474 (2016).
Yan, S., Xue, J. Z. & Wu, Q. S. Synchronous synthesis and sensing performance of alpha-Fe2O3/SnO2 nanofiber heterostructures for conductometric C2H5OH detection. Sens. Actuators B Chem. 275, 322–331 (2018).
Wang, Y., Zhang, H. & Sun, X. H. Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing. Appl. Surface Sci. 389, 514–520 (2016).
Zhu, C. H. et al. One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology 30, 255502 (2019).
Zhang, L.-T., Zhou, Y. & Han, S.-T. The role of metal-organic frameworks in electronic sensors. Angew. Chem. Int. Ed. 60, 15192–15212 (2021).
Stassin, T. et al. Vapour-phase deposition of oriented copper dicarboxylate metal-organic framework thin films. Chem. Commun. 55, 10056–10059 (2019).
Falcaro, P. et al. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342 (2017).
Alizadeh, S. & Nematollahi, D. Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal-organic framework thin films: composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores. J. Am. Chem. Soc. 139, 4753–4761 (2017).
Ikigaki, K. et al. MOF-on-MOF: oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem. Int. Ed. 58, 6886–6890 (2019).
Rubio-Gimenez, V. et al. High-quality metal-organic framework ultrathin films for electronically active interfaces. J. Am. Chem. Soc. 138, 2576–2584 (2016).
Rui, K. et al. Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage. ACS Appl. Mater. Interfaces 10, 2837–2842 (2018).
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Zhou, T. T. & Zhang, T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for gas sensors. Small Methods 5, 2100515 (2021).
Yang, L. et al. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500 (2020).
Tan, C. L. et al. Preparation of single-layer MoS2xSe2(1-x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016).
Sun, Y. F. et al. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017).
Duan, X. et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016).
Ko, K. Y. et al. High-performance gas sensor using a large-area WS2xSe2-2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018).
Nassar, J. M. et al. Paper skin multisensory platform for simultaneous environmental monitoring. Adv. Mater. Technol. 1, 1600004 (2016).
Guder, F. et al. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016).
Barandun, G. et al. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens. 4, 1662–1669 (2019).
Zhang, J. et al. Pencil-trace on printed silver interdigitated electrodes for paper-based NO2 gas sensors. Appl. Phys. Lett. 106, 143101 (2015).
Rufo, J. C., Madureira, J., Fernandes, E. O. & Moreira, A. Volatile organic compounds in asthma diagnosis: a systematic review and meta-analysis. Allergy 71, 175–188 (2016).
Bos, L. D., Sterk, P. J. & Fowler, S. J. Breathomics in the setting of asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 138, 970–976 (2016).
van Oort, P. M. et al. The potential role of exhaled breath analysis in the diagnostic process of pneumonia-a systematic review. J. Breath Res. 12, 024001 (2018).
Ruzsanyi, V. et al. Diagnosing lactose malabsorption in children: difficulties in interpreting hydrogen breath test results. J. Breath Res. 10, 016015 (2016).
Jalal, A. H. et al. Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018).
Mehaney, A., Alrowaili, Z. A., Elsayed, H. A., Taha, T. A. & Ahmed, A. M. Theoretical investigations of Tamm plasmon resonance for monitoring of isoprene traces in the exhaled breath: Towards chronic liver fibrosis disease biomarkers. Phys. Lett. A 413, 127610 (2021).
Smith, D., Spanel, P., Fryer, A. A., Hanna, F. & Ferns, G. A. A. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J. Breath Res. 5, 022001 (2011).
Buszewski, B., Kesy, M., Ligor, T. & Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 21, 553–566 (2007).
Crofford, O. B. et al. Acetone in breath and blood. Trans. Am. Clin. Climatolog. Assoc. 88, 128–139 (1977).
Henderson, M. J., Karger, B. A. & Wren Shall, G. A. Acetone in the breath; a study of acetone exhalation in diabetic and nondiabetic human subjects. Diabetes 1, 188 (1952).
Sulway, M. J. & Malins, J. M. Acetone in diabetic ketoacidosis. Lancet 2, 736–740 (1970).
Ruzsanyi, V. & Kalapos, M. P. Breath acetone as a potential marker in clinical practice. J. Breath Res. 11, 024002 (2017).
Koeslag, J. H. Post-exercise ketosis and the hormone response to exercise: a review. Med. Sci. Sports Exerc. 14, 327–334 (1982). 1982. [Online]. Available: <Go to ISI>://MEDLINE:6759842.
Musa-Veloso, K. et al. Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 22, 1–8 (2006).
Cope, K., Risby, T. & Diehl, A. M. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology 119, 1340–1347 (2000).
Umasankar, Y. et al., “Wearable alcohol monitoring device with auto-calibration ability for high chemical specificity,” in 13th IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, 2016 Jun 14-17 2016, in International Conference on Wearable and Implantable Body Sensor Networks, 353–358. (IEEE Xplore, 2016)
Polissar, N. L., Suwanvijit, W. & Gullberg, R. G. The accuracy of handheld pre-arrest breath test instruments as a predictor of the evidential breath alcohol test results. J. Forensic Sci. 60, 482–487 (2015).
Cailleux, A. & Allain, P. Isoprene and sleep. Life sciences 44, 1877–80, (1989). 1989.
Mochalski, P., King, J., Mayhew, C. A. & Unterkofler, K. A review on isoprene in human breath. J. Breath Res. 17, 037101 (2023).
Levitt, M. D., Furne, J. K., Kuskowski, M. & Ruddy, J. Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements. Clin. Gastroenterol. Hepatol. 4, 123–129 (2006).
Das, S. & Pal, M. Review-non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167, 037562 (2020).
Haines, A. P., Imeson, J. D. & Wiggins, H. S. Relation of breath methane with obesity and other factors. Int. J. Obes. 8, 675–680 (1984).
Wilder-Smith, C. H., Olesen, S. S., Materna, A. & Drewes, A. M. Breath methane concentrations and markers of obesity in patients with functional gastrointestinal disorders. United Eur. Gastroenterol. J. 6, 595–603 (2018).
Riely, C. A., Cohen, G. & Lieberman, M. Ethane evolution: a new index of lipid peroxidation. Science (New York, N.Y.) 183, 208–10 (1974). 1974.
Allerheiligen, S. R., Ludden, T. M. & Burk, R. F. The pharmacokinetics of pentane, a by-product of lipid peroxidation. Drug Metab. Dispos. Biolog. Fate Chem. 15, 794–800 (1987).
Ivanova, S. M., Orlov, O. N., Brantova, S. S., Labetskaia, O. I. & Davydova, N. A. Effect of intensive operator activity on lipid peroxidation processes in the human body. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina 20, 20–22 (1986).
Leaf, D. A., Kleinman, M. T., Hamilton, M. & Barstow, T. J. The effect of exercise intensity on lipid peroxidation. Med. Sci. Sports Exerc. 29, 1036–9 (1997). 1997.
Torok, Z. M. et al. Breath biomarkers as disease indicators: sensing techniques approach for detecting breath gas and COVID-19. Chemosensors 10, 167 (2022).
Chen, H. et al. COVID-19 screening using breath-borne volatile organic compounds. J. Breath Res. 15, 4 (2021). 047104.
Shan, B. et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. Acs Nano 14, 12125–12132 (2020).
Burton, B. K. Urea cycle disorders. Clin. Liver Dis. 4, 815–30, (2000). vi2000.
Mew, N. A., Yudkoff, M. & Tuchman, M. Stable isotopes in the diagnosis and treatment of inherited hyperammonemia. J. Pediatr. Biochem. 4, 57–63 (2014).
Walker, V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obesity Metab. 11, 823–835 (2009).
Davies, S., Spanel, P. & Smith, D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 52, 223–8 (1997).
Agarwal, A., Rai, S. K., Lin, Y. C., Patnaik, R. K. & Yeh, J. A. Ammonia selectivity over acetone by viscosity modulation of silicone oil filter for diagnosing liver dysfunction. Ecs J. Solid State Sci. Technol. 9, 115030 (2020).
He, Y. et al. Partial pressure of NH3 in cirrhotic patients with and without hepatic encephalopathy. J. Gastrointest. Liver Dis. 20, 169–174 (2011).
Pham, Y. L. & Beauchamp, J. Breath biomarkers in diagnostic applications. Molecules 26, 5514 (2021).
Palmer, R. M. The L-arginine: nitric oxide pathway. Curr. Opin. Nephrol. Hypertens. 2, 122–8, (1993).
Saleh, D., Ernst, P., Lim, S., Barnes, P. J. & Giaid, A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J. 12, 929–37 (1998).
Ashutosh, K. Nitric oxide and asthma: a review. Curr. Opin. Pulm. Med. 6, 21–5 (2000).
Cao, W. Q. & Duan, Y. X. Breath analysis: Potential for clinical diagnosis and exposure assessment. Clin. Chem. 52, 800–811 (2006).
Kharitonov, S. A., Yates, D. & Barnes, P. J. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Euro. Respir. J. 8, 295–7 (1995).
Barnes, P. J. & Kharitonov, S. A. Exhaled nitric oxide: a new lung function test. Thorax 51, 233–7 (1996).
Dotsch, J. et al. Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Euro. Respir. J. 9, 2537–40 (1996).
Olas, B. Hydrogen sulfide in signaling pathways. Clin. Chim. Acta 439, 212–218 (2015).
Tangerman, A. & Winkel, E. G. Intra- and extra-oral halitosis: finding of a new form of extra-oral blood-borne halitosis caused by dimethyl sulphide. J. Clin. Periodontol. 34, 748–755 (2007).
Morselli-Labate, A. M., Fantini, L. & Pezzilli, R. Hydrogen sulfide, nitric oxide and a molecular mass 66 u substance in the exhaled breath of chronic pancreatitis patients. Pancreatology 7, 497–504 (2007).
Robles, L. & Priefer, R. Lactose intolerance: what your breath can tell you. Diagnostics 10, 412 (2020).
Bauer, T. M. et al. Diagnosis of small intestinal bacterial overgrowth in patients with cirrhosis of the liver: poor performance of the glucose breath hydrogen test. J. Hepatol. 33, 382–386 (2000).
Shin, W. Medical applications of breath hydrogen measurements. Anal. Bioanal. Chem. 406, 3931–3939 (2014).
Evans, D., Hodgkinson, B. & Berry, J. Vital signs in hospital patients: a systematic review. Int. J. Nursing Stud. 38, 643–650 (2001).
Tai, H. L., Wang, S., Duan, Z. H. & Jiang, Y. D. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens. Actuators B Chem. 318, 128104 (2020).
Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016).
Guo, L., Berglin, L., Wiklund, U. & Mattila, H. Design of a garment-based sensing system for breathing monitoring. Textile Res. J. 83, 499–509 (2013).
Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and multiorgan response. Curr. Problems Cardiol. 45, 100618 (2020).
Ryvlin, P. et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 12, 966–977 (2013).
Greer, D. M. Mechanisms of injury in hypoxic-ischemic encephalopathy: Implications to therapy. Semin. Neurol. 26, 373–379 (2006).
Alviar, C. L. et al. Positive pressure ventilation in the cardiac intensive care unit. J. Am. Coll. Cardiol. 72, 1532–1553 (2018).
Mojoli, F., Bouhemad, B., Mongodi, S. & Lichtenstein, D. Lung ultrasound for critically Ill patients. Am. J. Respir. Crit. Care Med. 199, 701–714 (2019).
Effros, R. M. et al. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med. 165, 663–669 (2002).
Miekisch, W., Schubert, J. K. & Noeldge-Schomburg, G. F. E. Diagnostic potential of breath analysis – focus on volatile organic compounds. Clin. Chim. Acta 347, 25–39 (2004).
Zacharasiewicz, A. et al. Repeatability of sodium and chloride in exhaled breath condensates. Pediatric Pulmonol. 37, 273–275 (2004).
Baraldi, E. et al. Safety and success of exhaled breath condensate collection in asthma. Archives Dis. Childhood 88, 358–360 (2003).
Gholizadeh, A. et al. Toward point-of-care management of chronic respiratory conditions: electrochemical sensing of nitrite content in exhaled breath condensate using reduced graphene oxide. Microsyst. Nanoeng. 3, 17022 (2017).
Wewel, A. R. et al. Time course of exhaled hydrogen peroxide and nitric oxide during chemotherapy. Eur. Respir. J. 27, 1033–1039 (2006).
Horvath, I. et al., Exhaled breath condensate: methodological recommendations and unresolved questions. Euro. Respir. J. 26, 523–548, (2005).
Jobsis, Q., Raatgeep, H. C., Hermans, P. W. & de Jongste, J. C. Hydrogen peroxide in exhaled air is increased in stable asthmatic children. Euro. Respir. J. 10, 519–521 (1997).
Nowak, D. et al. Increased content of hydrogen peroxide in the expired breath of cigarette smokers. Euro. Respir. J. 9, 652–7 (1996). 1996.
De Benedetto, F. et al. Validation of a new technique to assess exhaled hydrogen peroxide: results from normals and COPD patients. Monaldi Archives Chest Disease = Archivio Monaldi Malattie Del Torace 55, 185–188 (2000).
Heard, S. O. et al. The influence of liposome-encapsulated prostaglandin E-1 on hydrogen peroxide concentrations in the exhaled breath of patients with the acute respiratory distress syndrome. Anesth. Analg. 89, 353–357 (1999).
Chen, Y. C. & O’Hare, D. Exhaled breath condensate based breath analyser – a disposable hydrogen peroxide sensor and smart analyser. Analyst 145, 3549–3556 (2020).
Davis, M. D., Montpetit, A. & Hunt, J. Exhaled breath condensate an overview. Immunol. Allergy Clin. N. Am. 32, 363 (2012).
Davis, M. D. & Montpetit, A. J. Exhaled breath condensate an update. Immunol. Allergy Clin. N. Am. 38, 667 (2018).
Sawano, M., Takeshita, K., Ohno, H. & Oka, H. RT-PCR diagnosis of COVID-19 from exhaled breath condensate: a clinical study. J. Breath Res. 15, 037103 (2021).
Cepelak, I. & Dodig, S. Exhaled breath condensate: a new method for lung disease diagnosis. Clin. Chem. Lab. Med. 45, 945–952 (2007).
Scheideler, L., Manke, H. G., Schwulera, U., Inacker, O. & Hammerle, H. Detection of nonvolatile macromolecules in breath. A possible diagnostic tool? Am. Rev. Respir. Dis. 148, 778–84 (1993). 1993.
Konvalina, G. & Haick, H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47, 66–76 (2014).
Shirasu, M. & Touhara, K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J. Biochem. 150, 257–266 (2011).
Costello, B. D. et al. A review of the volatiles from the healthy human body. J. Breath Res. 8, 014001 (2014).
Fowler, S. J. Breath analysis for label-free characterisation of airways disease. Eur. Respir. J. 51, 1702586 (2018).
Guntner, A. T. et al. Guiding ketogenic diet with breath acetone sensors. Sensors 18, 3655 (2018).
Davis, D. et al. Flexible paper-based room-temperature acetone sensors with ultrafast regeneration. ACS Appl. Mater. Interfaces 15, 25734–25743 (2023).
Chuang, M. Y. et al. Room-temperature-operated organic-based acetone gas sensor for breath analysis. Sens. Actuators B Chem. 260, 593–600 (2018).
Wang, L. L., Jackman, J. A., Park, J. H., Tan, E. L. & Cho, N. J. A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. J. Mater. Chem. B 5, 4019–4024 (2017).
Weber, I. C., Braun, H. P., Krumeich, F., Guntner, A. T. & Pratsinis, S. E. Superior acetone selectivity in gas mixtures by catalyst-filtered chemoresistive sensors. Adv. Sci. 7, 2001503 (2020).
Raghu, A. V., Karuppanan, K. K., Nampoothiri, J. & Pullithadathil, B. Wearable, flexible ethanol gas sensor based on TiO2 nanoparticles-grafted 2D-titanium carbide nanosheets. ACS Appl. Nano Mater. 2, 1152–1163 (2019).
Maity, D., Rajavel, K. & Kumar, R. T. R. Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sens. Actuators B Chemical 261, 297–306 (2018).
Wei, H. L., Kumar, P. & Yao, D. J. Printed resistive sensor array combined with a flexible substrate for ethanol and methane detection. ECS J. Solid State Sci. Technol. 9, 115008 (2020).
Kim, S. Y. et al. Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires. Sens. Actuators B Chem. 259, 825–832 (2018).
Wang, K., Wei, W., Lou, Z., Zhang, H. & Wang, L. L. 1D/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity. Appl. Surface Sci. 479, 209–215 (2019).
van den Broek, J., Guntner, A. T. & Pratsinis, S. E. Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sensors 3, 677 (2018).
Chen, Q. F., Liu, D., Lin, L. M. & Wu, J. M. Bridging interdigitated electrodes by electrochemical-assisted deposition of graphene oxide for constructing flexible gas sensor. Sens. Actuators B Chem. 286, 591–599 (2019).
Zheng, Q., Lee, J. H., Kim, S. J., Lee, H. S. & Lee, W. Excellent isoprene-sensing performance of In2O3 nanoparticles for breath analyzer applications. Sens.s Actuators B Chem. 327, 128892 (2021).
Saito, N., Haneda, H., Watanabe, K., Shimanoe, K. & Sakaguchi, I. Highly sensitive isoprene gas sensor using Au-loaded pyramid-shaped ZnO particles. Sens. Actuators B Chem. 326, 128999 (2021).
Han, B. Q. et al. Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis. Sens. Actuators B Chem. 309, 127788 (2020).
Chen, M. et al. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology 29, 455501 (2018).
Xue, D. P., Wang, P. T., Zhang, Z. Y. & Wang, Y. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sens. Actuators B Chem. 296, 126710 (2019).
Niu, F. et al. Synthesizing metal oxide semiconductors on doped Si/SiO2 flexible fiber substrates for wearable gas sensing. Research 6, 0100 (2023).
Zhang, D. Z., Mi, Q., Wang, D. Y. & Li, T. T. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuators B Chem. 339, 129923 (2021).
Li, Y. X. et al. Rational design and in situ growth of SnO2/CMF composites: insightful understanding of the formaldehyde gas sensing mechanism and enhanced gas sensing properties. J. Mater. Chem. C 8, 12418–12426 (2020).
Mani, G. K. & Rayappan, J. B. B. ZnO nanoarchitectures: Ultrahigh sensitive room temperature acetaldehyde sensor. Sens. Actuators B Chem. 223, 343–351 (2016).
Nakate, U. T., Yu, Y. T. & Park, S. High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sens. Actuators B Chem. 344, 130264 (2021).
Wu, Z. X. et al. Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17, 2104997 (2021).
Tang, N. et al. A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4, 726–732 (2019).
Guntner, A. T., Wied, M., Pineau, N. J. & Pratsinis, S. E. Rapid and selective NH3 sensing by porous CuBr. Adv. Sci. 7, 1903390 (2020).
Zhang, C. et al. Laser processing of crumpled porous graphene/mxene nanocomposites for a standalone gas sensing system. Nano Lett. 23, 3435–3443 (2023).
Yang, T. et al. Wearable smart yarn sensor based on ZnO/SnO2 heterojunction for ammonia detecting. J. Mater. Sci. 57, 21946–21959 (2022).
Alharthy, R. D. & Saleh, A. A novel trace-level ammonia gas sensing based on flexible PAni-CoFe2O4 nanocomposite film at room temperature. Polymers 13, 3077 (2021).
Alshabouna, F. et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater. Today 59, 56–67 (2022).
Wang, S. et al. An integrated flexible self-powered wearable respiration sensor. Nano Energy 63, 103829 (2019).
Tong, X., Zhang, X. J., Li, J. & Wang, H. Flexible NH3 gas sensor based on TiO2/cellulose nanocrystals composite film at room temperature. J. Mater. Sci. Mater. Electron. 32, 23566–23577 (2021).
Serafini, M. et al. A wearable electrochemical gas sensor for ammonia detection. Sensors 21, 7905 (2021).
Lee, S. H. et al. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12, 10434–10442 (2020).
Li, H. Y., Lee, C. S., Kim, D. H. & Lee, J. H. Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10, 27858–27867 (2018).
Zhou, Y. L., Wang, J. & Li, X. K. Flexible room-temperature gas sensor based on poly (para-phenylene terephthalamide) fibers substrate coupled with composite NiO@CuO sensing materials for ammonia detection. Ceramics Int. 46, 13827–13834 (2020).
Yang, L. Y. et al. Wearable and flexible bacterial cellulose/polyaniline ammonia sensor based on a synergistic doping strategy. Sens. Actuators B Chem. 334, 129647 (2021).
Nie, Q. X. et al. Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surfaces a Physicochem. Eng. Aspects 537, 532–539 (2018).
Wu, J. et al. Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12, 52070–52081 (2020).
Bag, A. et al. A room-temperature operable and stretchable NO2 gas sensor composed of reduced graphene oxide anchored with MOF-derived ZnFe2O4 hollow octahedron. Sens. Actuators B Chem. 346, 130463 (2021).
Kang, J. Y. et al. 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. Sens. Actuators B-Chem. 331, 129371 (2021).
Duy, L. T. & Seo, H. Eco-friendly, self-healing, and stretchable graphene hydrogels functionalized with diol oligomer for wearable sensing applications. Sens. Actuators B Chem. 321, 128507 (2020).
Moon, D. B. et al. A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods. Sens. Actuators B Chem. 345, 130373 (2021).
Khalifa, M. & Anandhan, S. Highly sensitive and wearable NO2 gas sensor based on PVDF nanofabric containing embedded polyaniline/g-C3N4 nanosheet composites. Nanotechnology 32, 485504 (2021).
Park, J., Ryu, C., Jang, I., Jung, S. I. & Kim, H. J. A study of strain effect on stretchable carbon nanotube gas sensors. Mater. Today Commun. 33, 105007 (2022).
Cho, S. Y. et al. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 13, 9332–9341 (2019).
Song, Y. Y. et al. MXene-Derived TiO2 nanoparticles intercalating between RGO nanosheets: an assembly for highly sensitive gas detection. ACS Appl. Mater. Interfaces 13, 39772–39780 (2021).
Yan, W. H. et al. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater. 3, 2545–2553 (2020).
Hou, C., Tai, G., Liu, Y. & Liu, X. Borophene gas sensor. Nano Res. 15, 2537–2544 (2022).
Chang, S. L. et al. Intrinsically flexible CNT-TiO2-Interlaced film for NO sensing at room temperature. Appl. Surface Sci. 579, 152172 (2022).
Wu, Z. X. et al. A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, https://doi.org/10.1002/adfm.202300046 (2023).
Mahajan, A. & Gasso, S. Self-powered wearable gas sensors based on L-Ascorbate-Treated MXene nanosheets and SnO2 nanofibers. ACS Appl. Nano Mater. 6, 6678–6692 (2023).
Li, X. W. et al. Highly flexible all-inorganic nanofiber networks with stress-accommodating microstructure for light-activated wearable chemiresistive sensor. Chem. Eng. J. 455, 140768 (2023).
Gao, Z. D. et al. Engineering CuMOF in TiO2 nanochannels as flexible gas sensor for high-performance NO detection at room temperature. ACS Sens. 7, 2750–2758 (2022).
Huang, Y. F. et al. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021, 9847285 (2021).
Wang, L. J. et al. Facile synthesis of conductive metal-organic frameworks nanotubes for ultrahigh-performance flexible NO sensors. Small Methods 6, 2200581 (2022).
Zang, W. et al. Core-Shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 118, 9209–9216 (2014).
Asad, M. & Sheikhi, M. H. Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuators B Chem. 231, 474–483 (2016).
Kim, S. G., Tran, T. V. & Lee, J. S. Iron oxide-immobilized porous carbon nanofiber-based radio frequency identification (RFID) tag sensor for detecting hydrogen sulfide. J. Ind. Eng. Chem. 112, 423–429 (2022).
Wang, J. et al. Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022).
Zhang, X. L. et al. Flexible H2S sensors: Fabricated by growing NO2-UiO-66 on electrospun nanofibers for detecting ultralow concentration H2S. Appl. Surface Sci. 573, 151446 (2022).
Zhu, Z. Y. et al. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber. J. Hazardous Mater. 411, 125008 (2021).
Cho, M., Yun, J., Kwon, D., Kim, K. & Park, I. High-sensitivity and low-power flexible schottky hydrogen sensor based on silicon nanomembrane. ACS Appl. Mater. Interfaces 10, 12870–12877 (2018).
Kim, D. H. et al. High-resolution, fast, and shape-conformable hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt. ACS Nano 13, 6071–6082 (2019).
Nair, K. G., Vishnuraj, R. & Pullithadathil, B. Highly sensitive, flexible H-2 gas sensors based on less platinum bimetallic Ni-Pt nanocatalyst-functionalized carbon nanofibers. ACS Appl. Electron. Mater. 3, 1621–1633 (2021).
Xie, B. et al. Pd nanoparticle film on a polymer substrate for transparent and flexible hydrogen sensors. ACS Appl. Mater. Interfaces 10, 44603–44613 (2018).
Chen, Z. K. et al. Lead-free halide Cs2PtI6 perovskite favoring Pt-N bonding for trace NO detection. ACS Sens. 6, 3800–3807 (2021).
Punetha, D., Kar, M. & Pandey, S. K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 10, 2151 (2020).
Huang, X. W. et al. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11, 24533–24543 (2019).
Hu, L. H. et al. A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system. Nanotechnology 34, 195501 (2023).
Wang, J. J., Wang, N., Xu, D., Tang, L. & Sheng, B. Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly (ether-ether-ketone). Sens. Actuators B Chem. 375, 132846 (2023).
Yan, D., Qiu, L. L., Shea, K. J., Meng, Z. H. & Xue, M. Dyeing and functionalization of wearable silk fibroin/cellulose composite by nanocolloidal array. ACS Appl. Mater. Interfaces 11, 39163–39170 (2019).
Hou, C. et al. Ultrasensitive humidity sensing and the multifunctional applications of borophene-MoS2 heterostructures. J. Mater. Chem. A 9, 13100–13108 (2021).
Park, S. Y. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018).
Hou, C., Tai, G. A., Liu, B., Wu, Z. H. & Yin, Y. H. Borophene-graphene heterostructure: preparation and ultrasensitive humidity sensing. Nano Res. 14, 2337–2344 (2021).
Noh, W., Go, Y. & An, H. Y. S. Reduced graphene oxide/polyelectrolyte multilayers for fast resistive humidity sensing. Sensors 23, 1977 (2023).
Khattak, Z. J., Sajid, M., Javed, M., Rizvi, H. M. Z. & Awan, F. S. Mass-producible 2D nanocomposite-based temperature-independent all-printed relative humidity sensor. ACS Omega 7, 16605–16615 (2022).
Yao, D. J. et al. Gas-permeable and highly sensitive, washable and wearable strain sensors based on graphene/carbon nanotubes hybrids e-textile. Composites Part a Appl. Sci. Manuf. 149, 106556 (2021).
Guo, Q., Pang, W. W., Xie, X., Xu, Y. L. & Yuan, W. J. Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. J. Mater. Chem. A 10, 15634–15646 (2022).
Gao, W. C. et al. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring. ACS Appl. Mater. Interfaces 14, 1874–1884 (2022).
Huang, T. C., et al., Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid-solid/gas-solid coupled triboelectric nanogenerator. Adv. Sci. 9, (2022).
Sun, S., Hao, F. Y. & Maimaitiyiming, X. 3D print polyaniline/gelatin hydrogels as wearable multifunctional sensors. Chemistryselect. 7 (2022).
Hu, J. S. et al. Nano carbon black-based high performance wearable pressure sensors. Nanomaterials 10, 664 (2020).
Jiang, S. W., Yu, J. T., Xiao, Y., Zhu, Y. Y. & Zhang, W. L. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface. ACS Appl. Mater. Interfaces 11, 20500–20508 (2019).
Yang, T. et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 72, 104706 (2020).
Jiang, D. et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 15, 5000–5010 (2021).
Chao, M. Y. et al. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15, 9746–9758 (2021).
Zhou, Q. et al. Lithography-free formation of controllable microdomes via droplet templates for robust, ultrasensitive, and flexible pressure sensors. ACS Appl. Nano Mater. 2, 7178–7187 (2019).
Zhang, H. et al. Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring. Carbon 189, 430–442 (2022).
Ren, H. Y. et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13, 5541–5548 (2019).
Mondal, S., Min, B. K., Yi, Y., Nguyen, V. T. & Choi, C. G. Gamma-ray tolerant flexible pressure-temperature sensor for nuclear radiation environment. Adv. Mater. Technol. 6, 2001039 (2021).
Zhang, J. R. et al. Direct laser patterning of free-standing rgo electrodes for wearable capacitive pressure sensors. IEEE Photon. Technol. Lett. 34, 1361–1364 (2022).
Eatemadi, A. et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9, 393 (2014).
Kayser, L. V. & Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31, 1806133 (2019).
Naguib, M., Barsoum, M. W. & Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021).
Vaughan, J. et al. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur. Respir. J. 22, 889–894 (2003).
Mitsubayashi, K. et al. Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sens. Actuators B Chem. 95, 373–377 (2003).
Tentzeris, M. M., Nikolaou, S. & IEEE. RFID-enabled ultrasensitive wireless sensors utilizing inkjet-printed antennas and carbon nanotubes for gas detection applications. In Proc IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (Comcas 2009), (IEEE Xplore, 2009).
Jia, H. Y., Wang, J., Zhang, X. Y. & Wang, Y. P. Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Lett. 3, 86–90 (2014).
Zheng, Z. Q., Yao, J. D., Wang, B. & Yang, G. W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 5, 11070 (2015).
Kang, M. A. et al. Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Adv. 8, 11991–11996 (2018).
Shiu, B. C., Liu, Y. L., Yuan, Q. Y., Lou, C. W. & Lin, J. H. Preparation and characterization of PEDOT:PSS/TiO2 micro/nanofiber-based gas sensors. Polymers 14, 1780 (2022).
Lee, T. et al. Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process. Adv. Mater. 34, 2107696 (2022).
Lee, K. et al. Rough-surface-enabled capacitive pressure sensors with 3D touch capability. Small 13, 1700368 (2017).
Haick, H., Broza, Y. Y., Mochalski, P., Ruzsanyi, V. & Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43, 1423–1449 (2014).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41427-023-00513-9