Search
Close this search box.

Wearable respiratory sensors for health monitoring – NPG Asia Materials

  • Wang, C., Yin, L., Zhang, L., Xiang, D. & Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, M. Breath tests in medicine. Sci. Am. 267, 74–9 (1992). 1992.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, M. et al. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B 729, 75–88 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Fenske, J. D. & Paulson, S. E. Human breath emissions of VOCs. J. Air Waste Manag. Assoc. 49, 594–598 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathew, T. L., Pownraj, P., Abdulla, S. & Pullithadathil, B. Technologies for clinical diagnosis using expired human breath analysis. Diagnostics (Basel, Switzerland) 5, 27–60 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Righettoni, M., Amann, A. & Pratsinis, S. E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today 18, 163–171 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, X. R. et al. Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 29, 405–416 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceramics 7, 143–167 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B. & Habchi, R. A review on flexible gas sensors: from materials to devices. Sens. Actuators A Phys. 284, 209–231 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Alsyouri, H. M. & Lin, J. Y. S. Gas diffusion and microstructural properties of ordered mesoporous silica fibers. J. Phys. Chem. B 109, 13623–13629 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, C. Q. et al. Influence of nanoparticle size on ethanol gas sensing performance of mesoporous alpha-Fe(2)O3 hollow spheres. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 224, 158–162 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rout, C. S., Hegde, M. & Rao, C. N. R. H2S sensors based on tungsten oxide nanostructures. Sens. Actuators B Chem. 128, 488–493 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wagner, T., Haffer, S., Weinberger, C., Klaus, D. & Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 42, 4036–4053 (2013). 2013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, J. S., Choi, S. J., Kim, S. J., Hakim, M. & Kim, I. D. Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26, 4740–4748 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Mesoporous WO3 nanofibers with crystalline framework for high-performance acetone sensing. Front. Chem. 7, 266 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, J.-W. et al. Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater. 8, e244 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, P. B. et al. Flexible NO2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates. Flex. Print. Electron. 3, 035001 (2018).

    Article 

    Google Scholar
     

  • Gao, Z. et al. Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res. 11, 511–519 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L. & Perkins, F. K. Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6, 1747–1751 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J. J., Buldum, A., Han, J. & Lu, J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13, 195–200 (2002). Pii s0957-4484(02)30254-x.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, S. Y., Hou, P. X., Zhang, F., Liu, C. & Cheng, H. M. Gas Sensors Based on Single-Wall Carbon Nanotubes. Molecules 27, 5381 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, K. L., Wang, C. Y., Jian, M. Q., Wang, Q. & Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, X. Y., Bouchiat, V., Colombet, D. & Ayela, F. Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip. Rsc Adv. 9, 3232–3238 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D Appl. Phys. 43, 374009 (2010).

    Article 

    Google Scholar
     

  • Kim, K. S. et al. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics. Sci. Rep. 7, 2462 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, S. U. et al. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Microchim. Acta 189, 236 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Singh, E., Meyyappan, M. & Nalwa, H. S. FlexiblE GRAPHENE-BASED WEARABLE GAS AND CHEMICAL SEnsors. ACS Appl. Mater. Interfaces 9, 34544–34586 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, J. et al. Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv. 9, 075207 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kim, Y. H. et al. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9, 10453–10460 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L. & Fugetsu, B. Mass production of graphene oxide from expanded graphite. Mater. Lett. 109, 207–210 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, N., Chen, X. D., Chen, X. P., Ding, X. & Li, X. Y. Subsecond response of humidity sensor based on graphene oxide quantum dots. IEEE Electron Device Lett. 36, 615–617 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ahmadvand, H., Zad, A. I., Mohammadpour, R., Hosseini-Shokouh, S. H. & Asadian, E. Room temperature and high response ethanol sensor based on two dimensional hybrid nanostructures of WS2/GONRs. Sci. Rep. 10, 14799 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duy, L. T. et al. Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Functional Mater. 26, 4329–4338 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. F., Jang, J. & Nagase, S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114, 832–842 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. X. et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Pei, S. F. & Cheng, H. M. The reduction of graphene oxide. Carbon 50, 3210–3228 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. W. et al. Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide. Sens. Actuators B Chem. 345, 130423 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Highly sensitive NH3 wireless sensor based on Ag-RGO composite operated at room-temperature. Sci. Rep. 9, 9942 (2019).

  • Zhang, F. Z. et al. A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsyst. Nanoeng. 8, 40 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, https://doi.org/10.1038/ncomms6714. (2014).

  • Parmeggiani, M. et al. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl. Mater. Interfaces 11, 33221–33230 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, R. et al. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dimiev, A. M. et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano 7, 2773–2780 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas, R. K., Vijayaraghavan, R. K., McNally, P., O’Connor, G. M. & Scully, P. Graphene growth kinetics for CO2 laser carbonization of polyimide. Mater. Lett. 307, 131097 (2022).

    Article 

    Google Scholar
     

  • Li, G. J., Mo, X. Y., Law, W. C. & Chan, K. C. Wearable fluid capture devices for electrochemical sensing of sweat. ACS Appl. Mater. Interfaces 11, 238–243 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdulhafez, M., Tomaraei, G. N. & Bedewy, M. Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater. 4, 2973–2986 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Muzyka, K. & Xu, G. Laser-induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34, 574–589 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chyan, Y. et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xin, M., Li, J. A., Ma, Z., Pan, L. J. & Shi, Y. MXenes and their applications in wearable sensors. Front. Chem. 8, 297 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei, Y. Y. et al. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15, 3996–4017 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy, M. S. B., Kailasa, S., Marupalli, B. C. G., Aich, S. & Sadasivuni, K. K. A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sensors 7, 2132–2163 (2022).

    Article 

    Google Scholar
     

  • Li, X. et al. Room temperature VOCs sensing with termination-modified Ti3C2Tx MXene for wearable exhaled breath monitoring. Adv. Mater. Technol. 7, 2100872 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xing, H. et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem. 361, 131704 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Z. et al. Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Lett. 18, 4570–4575 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. H. et al. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B Chem. 261, 587–597 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, S. et al. Flexible ammonia sensor based on PEDOT:PSS/silver nanowire composite film for meat freshness monitoring. IEEE Electron Device Lett. 38, 975–978 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khan, I. & Saeed, K. Nanoparticles: properties, applications and toxicities. Arabian J. Chem. 12, 908–931 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Koga, K. Electronic and catalytic effects of single-atom pd additives on the hydrogen sensing properties of Co3O4 nanoparticle films. ACS Appl. Mater. Interfaces 12, 20806–20823 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rai, P., Kim, Y. S., Song, H. M., Song, M. K. & Yu, Y. T. The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem. 165, 133–142 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Marikutsa, A., Novikova, A., Rumyantseva, M., Khmelevsky, N. & Gaskov, A. Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC. Sens. Actuators B Chem. 326, 128980 (2021).

    Article 
    CAS 

    Google Scholar
     

  • D’Arienzo, M. et al. One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem. Mater. 22, 4083–4089 (2010).

    Article 

    Google Scholar
     

  • Kolmakov, A., Klenov, D. O., Lilach, Y., Stemmer, S. & Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, W., Jang, B., Lee, H.-S. & Lee, W. Reliability and selectivity of H-2 sensors composed of Pd Film nanogaps on an elastomeric substrate. Sens. Actuators B Chem. 224, 547–551 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. & Feng, Y. Palladium-silver thin film for hydrogen sensing. Sens. Actuators B Chem. 123, 101–106 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wolfe, D. B., Love, J. C., Paul, K. E., Chabinyc, M. L. & Whitesides, G. M. Fabrication of palladium-based microelectronic devices by microcontact printing. Appl. Phys. Lett. 80, 2222–2224 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McConnell, C. et al. Hydrogen sensors based on flexible carbon nanotube-palladium composite sheets integrated with ripstop fabric. ACS Omega 5, 487–497 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. W., Wang, J. & Long, Y. C. Zeolite-based materials for gas sensors. Sensors 6, 1751–1764 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Della Gaspera, E. et al. Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties. J. Mater. Chem. 21, 4293–4300, (2011). 2011.

    Article 

    Google Scholar
     

  • Shin, J. et al. Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23, 2357–2367 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Shao, F. et al. Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens. Actuators B Chem. 181, 130–135 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Miller, D. R., Akbar, S. A. & Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens.s Actuators B Chem. 204, 250–272 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z., Tian, Z., Han, D. & Gu, F. Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO. ACS Appl. Mater. Interfaces 8, 5466–5474 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, S., Xue, J. Z. & Wu, Q. S. Synchronous synthesis and sensing performance of alpha-Fe2O3/SnO2 nanofiber heterostructures for conductometric C2H5OH detection. Sens. Actuators B Chem. 275, 322–331 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Zhang, H. & Sun, X. H. Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing. Appl. Surface Sci. 389, 514–520 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, C. H. et al. One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology 30, 255502 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L.-T., Zhou, Y. & Han, S.-T. The role of metal-organic frameworks in electronic sensors. Angew. Chem. Int. Ed. 60, 15192–15212 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stassin, T. et al. Vapour-phase deposition of oriented copper dicarboxylate metal-organic framework thin films. Chem. Commun. 55, 10056–10059 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Falcaro, P. et al. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alizadeh, S. & Nematollahi, D. Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal-organic framework thin films: composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores. J. Am. Chem. Soc. 139, 4753–4761 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikigaki, K. et al. MOF-on-MOF: oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem. Int. Ed. 58, 6886–6890 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rubio-Gimenez, V. et al. High-quality metal-organic framework ultrathin films for electronically active interfaces. J. Am. Chem. Soc. 138, 2576–2584 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rui, K. et al. Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage. ACS Appl. Mater. Interfaces 10, 2837–2842 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, T. T. & Zhang, T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for gas sensors. Small Methods 5, 2100515 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tan, C. L. et al. Preparation of single-layer MoS2xSe2(1-x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. F. et al. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, X. et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, K. Y. et al. High-performance gas sensor using a large-area WS2xSe2-2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nassar, J. M. et al. Paper skin multisensory platform for simultaneous environmental monitoring. Adv. Mater. Technol. 1, 1600004 (2016).

    Article 

    Google Scholar
     

  • Guder, F. et al. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016).

    Article 

    Google Scholar
     

  • Barandun, G. et al. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens. 4, 1662–1669 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Pencil-trace on printed silver interdigitated electrodes for paper-based NO2 gas sensors. Appl. Phys. Lett. 106, 143101 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Rufo, J. C., Madureira, J., Fernandes, E. O. & Moreira, A. Volatile organic compounds in asthma diagnosis: a systematic review and meta-analysis. Allergy 71, 175–188 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bos, L. D., Sterk, P. J. & Fowler, S. J. Breathomics in the setting of asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 138, 970–976 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • van Oort, P. M. et al. The potential role of exhaled breath analysis in the diagnostic process of pneumonia-a systematic review. J. Breath Res. 12, 024001 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ruzsanyi, V. et al. Diagnosing lactose malabsorption in children: difficulties in interpreting hydrogen breath test results. J. Breath Res. 10, 016015 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jalal, A. H. et al. Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehaney, A., Alrowaili, Z. A., Elsayed, H. A., Taha, T. A. & Ahmed, A. M. Theoretical investigations of Tamm plasmon resonance for monitoring of isoprene traces in the exhaled breath: Towards chronic liver fibrosis disease biomarkers. Phys. Lett. A 413, 127610 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Smith, D., Spanel, P., Fryer, A. A., Hanna, F. & Ferns, G. A. A. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J. Breath Res. 5, 022001 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Buszewski, B., Kesy, M., Ligor, T. & Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 21, 553–566 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crofford, O. B. et al. Acetone in breath and blood. Trans. Am. Clin. Climatolog. Assoc. 88, 128–139 (1977).

    CAS 

    Google Scholar
     

  • Henderson, M. J., Karger, B. A. & Wren Shall, G. A. Acetone in the breath; a study of acetone exhalation in diabetic and nondiabetic human subjects. Diabetes 1, 188 (1952).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sulway, M. J. & Malins, J. M. Acetone in diabetic ketoacidosis. Lancet 2, 736–740 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruzsanyi, V. & Kalapos, M. P. Breath acetone as a potential marker in clinical practice. J. Breath Res. 11, 024002 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Koeslag, J. H. Post-exercise ketosis and the hormone response to exercise: a review. Med. Sci. Sports Exerc. 14, 327–334 (1982). 1982. [Online]. Available: <Go to ISI>://MEDLINE:6759842.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musa-Veloso, K. et al. Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 22, 1–8 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cope, K., Risby, T. & Diehl, A. M. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology 119, 1340–1347 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Umasankar, Y. et al., “Wearable alcohol monitoring device with auto-calibration ability for high chemical specificity,” in 13th IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, 2016 Jun 14-17 2016, in International Conference on Wearable and Implantable Body Sensor Networks, 353–358. (IEEE Xplore, 2016)

  • Polissar, N. L., Suwanvijit, W. & Gullberg, R. G. The accuracy of handheld pre-arrest breath test instruments as a predictor of the evidential breath alcohol test results. J. Forensic Sci. 60, 482–487 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cailleux, A. & Allain, P. Isoprene and sleep. Life sciences 44, 1877–80, (1989). 1989.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mochalski, P., King, J., Mayhew, C. A. & Unterkofler, K. A review on isoprene in human breath. J. Breath Res. 17, 037101 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Levitt, M. D., Furne, J. K., Kuskowski, M. & Ruddy, J. Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements. Clin. Gastroenterol. Hepatol. 4, 123–129 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, S. & Pal, M. Review-non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167, 037562 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haines, A. P., Imeson, J. D. & Wiggins, H. S. Relation of breath methane with obesity and other factors. Int. J. Obes. 8, 675–680 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilder-Smith, C. H., Olesen, S. S., Materna, A. & Drewes, A. M. Breath methane concentrations and markers of obesity in patients with functional gastrointestinal disorders. United Eur. Gastroenterol. J. 6, 595–603 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Riely, C. A., Cohen, G. & Lieberman, M. Ethane evolution: a new index of lipid peroxidation. Science (New York, N.Y.) 183, 208–10 (1974). 1974.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Allerheiligen, S. R., Ludden, T. M. & Burk, R. F. The pharmacokinetics of pentane, a by-product of lipid peroxidation. Drug Metab. Dispos. Biolog. Fate Chem. 15, 794–800 (1987).

    CAS 

    Google Scholar
     

  • Ivanova, S. M., Orlov, O. N., Brantova, S. S., Labetskaia, O. I. & Davydova, N. A. Effect of intensive operator activity on lipid peroxidation processes in the human body. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina 20, 20–22 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Leaf, D. A., Kleinman, M. T., Hamilton, M. & Barstow, T. J. The effect of exercise intensity on lipid peroxidation. Med. Sci. Sports Exerc. 29, 1036–9 (1997). 1997.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torok, Z. M. et al. Breath biomarkers as disease indicators: sensing techniques approach for detecting breath gas and COVID-19. Chemosensors 10, 167 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. COVID-19 screening using breath-borne volatile organic compounds. J. Breath Res. 15, 4 (2021). 047104.


    Google Scholar
     

  • Shan, B. et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. Acs Nano 14, 12125–12132 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burton, B. K. Urea cycle disorders. Clin. Liver Dis. 4, 815–30, (2000). vi2000.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mew, N. A., Yudkoff, M. & Tuchman, M. Stable isotopes in the diagnosis and treatment of inherited hyperammonemia. J. Pediatr. Biochem. 4, 57–63 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obesity Metab. 11, 823–835 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Davies, S., Spanel, P. & Smith, D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 52, 223–8 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A., Rai, S. K., Lin, Y. C., Patnaik, R. K. & Yeh, J. A. Ammonia selectivity over acetone by viscosity modulation of silicone oil filter for diagnosing liver dysfunction. Ecs J. Solid State Sci. Technol. 9, 115030 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, Y. et al. Partial pressure of NH3 in cirrhotic patients with and without hepatic encephalopathy. J. Gastrointest. Liver Dis. 20, 169–174 (2011).

    CAS 

    Google Scholar
     

  • Pham, Y. L. & Beauchamp, J. Breath biomarkers in diagnostic applications. Molecules 26, 5514 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmer, R. M. The L-arginine: nitric oxide pathway. Curr. Opin. Nephrol. Hypertens. 2, 122–8, (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saleh, D., Ernst, P., Lim, S., Barnes, P. J. & Giaid, A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J. 12, 929–37 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashutosh, K. Nitric oxide and asthma: a review. Curr. Opin. Pulm. Med. 6, 21–5 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, W. Q. & Duan, Y. X. Breath analysis: Potential for clinical diagnosis and exposure assessment. Clin. Chem. 52, 800–811 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kharitonov, S. A., Yates, D. & Barnes, P. J. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Euro. Respir. J. 8, 295–7 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Barnes, P. J. & Kharitonov, S. A. Exhaled nitric oxide: a new lung function test. Thorax 51, 233–7 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dotsch, J. et al. Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Euro. Respir. J. 9, 2537–40 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Olas, B. Hydrogen sulfide in signaling pathways. Clin. Chim. Acta 439, 212–218 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tangerman, A. & Winkel, E. G. Intra- and extra-oral halitosis: finding of a new form of extra-oral blood-borne halitosis caused by dimethyl sulphide. J. Clin. Periodontol. 34, 748–755 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Morselli-Labate, A. M., Fantini, L. & Pezzilli, R. Hydrogen sulfide, nitric oxide and a molecular mass 66 u substance in the exhaled breath of chronic pancreatitis patients. Pancreatology 7, 497–504 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robles, L. & Priefer, R. Lactose intolerance: what your breath can tell you. Diagnostics 10, 412 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, T. M. et al. Diagnosis of small intestinal bacterial overgrowth in patients with cirrhosis of the liver: poor performance of the glucose breath hydrogen test. J. Hepatol. 33, 382–386 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, W. Medical applications of breath hydrogen measurements. Anal. Bioanal. Chem. 406, 3931–3939 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, D., Hodgkinson, B. & Berry, J. Vital signs in hospital patients: a systematic review. Int. J. Nursing Stud. 38, 643–650 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Tai, H. L., Wang, S., Duan, Z. H. & Jiang, Y. D. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens. Actuators B Chem. 318, 128104 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, L., Berglin, L., Wiklund, U. & Mattila, H. Design of a garment-based sensing system for breathing monitoring. Textile Res. J. 83, 499–509 (2013).

    Article 

    Google Scholar
     

  • Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and multiorgan response. Curr. Problems Cardiol. 45, 100618 (2020).

    Article 

    Google Scholar
     

  • Ryvlin, P. et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 12, 966–977 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Greer, D. M. Mechanisms of injury in hypoxic-ischemic encephalopathy: Implications to therapy. Semin. Neurol. 26, 373–379 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Alviar, C. L. et al. Positive pressure ventilation in the cardiac intensive care unit. J. Am. Coll. Cardiol. 72, 1532–1553 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mojoli, F., Bouhemad, B., Mongodi, S. & Lichtenstein, D. Lung ultrasound for critically Ill patients. Am. J. Respir. Crit. Care Med. 199, 701–714 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Effros, R. M. et al. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med. 165, 663–669 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Miekisch, W., Schubert, J. K. & Noeldge-Schomburg, G. F. E. Diagnostic potential of breath analysis – focus on volatile organic compounds. Clin. Chim. Acta 347, 25–39 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zacharasiewicz, A. et al. Repeatability of sodium and chloride in exhaled breath condensates. Pediatric Pulmonol. 37, 273–275 (2004).

    Article 

    Google Scholar
     

  • Baraldi, E. et al. Safety and success of exhaled breath condensate collection in asthma. Archives Dis. Childhood 88, 358–360 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Gholizadeh, A. et al. Toward point-of-care management of chronic respiratory conditions: electrochemical sensing of nitrite content in exhaled breath condensate using reduced graphene oxide. Microsyst. Nanoeng. 3, 17022 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wewel, A. R. et al. Time course of exhaled hydrogen peroxide and nitric oxide during chemotherapy. Eur. Respir. J. 27, 1033–1039 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horvath, I. et al., Exhaled breath condensate: methodological recommendations and unresolved questions. Euro. Respir. J. 26, 523–548, (2005).

  • Jobsis, Q., Raatgeep, H. C., Hermans, P. W. & de Jongste, J. C. Hydrogen peroxide in exhaled air is increased in stable asthmatic children. Euro. Respir. J. 10, 519–521 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Nowak, D. et al. Increased content of hydrogen peroxide in the expired breath of cigarette smokers. Euro. Respir. J. 9, 652–7 (1996). 1996.

    Article 
    CAS 

    Google Scholar
     

  • De Benedetto, F. et al. Validation of a new technique to assess exhaled hydrogen peroxide: results from normals and COPD patients. Monaldi Archives Chest Disease = Archivio Monaldi Malattie Del Torace 55, 185–188 (2000).


    Google Scholar
     

  • Heard, S. O. et al. The influence of liposome-encapsulated prostaglandin E-1 on hydrogen peroxide concentrations in the exhaled breath of patients with the acute respiratory distress syndrome. Anesth. Analg. 89, 353–357 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. C. & O’Hare, D. Exhaled breath condensate based breath analyser – a disposable hydrogen peroxide sensor and smart analyser. Analyst 145, 3549–3556 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, M. D., Montpetit, A. & Hunt, J. Exhaled breath condensate an overview. Immunol. Allergy Clin. N. Am. 32, 363 (2012).

    Article 

    Google Scholar
     

  • Davis, M. D. & Montpetit, A. J. Exhaled breath condensate an update. Immunol. Allergy Clin. N. Am. 38, 667 (2018).

    Article 

    Google Scholar
     

  • Sawano, M., Takeshita, K., Ohno, H. & Oka, H. RT-PCR diagnosis of COVID-19 from exhaled breath condensate: a clinical study. J. Breath Res. 15, 037103 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cepelak, I. & Dodig, S. Exhaled breath condensate: a new method for lung disease diagnosis. Clin. Chem. Lab. Med. 45, 945–952 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheideler, L., Manke, H. G., Schwulera, U., Inacker, O. & Hammerle, H. Detection of nonvolatile macromolecules in breath. A possible diagnostic tool? Am. Rev. Respir. Dis. 148, 778–84 (1993). 1993.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konvalina, G. & Haick, H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47, 66–76 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shirasu, M. & Touhara, K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J. Biochem. 150, 257–266 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costello, B. D. et al. A review of the volatiles from the healthy human body. J. Breath Res. 8, 014001 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fowler, S. J. Breath analysis for label-free characterisation of airways disease. Eur. Respir. J. 51, 1702586 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Guntner, A. T. et al. Guiding ketogenic diet with breath acetone sensors. Sensors 18, 3655 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, D. et al. Flexible paper-based room-temperature acetone sensors with ultrafast regeneration. ACS Appl. Mater. Interfaces 15, 25734–25743 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chuang, M. Y. et al. Room-temperature-operated organic-based acetone gas sensor for breath analysis. Sens. Actuators B Chem. 260, 593–600 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. L., Jackman, J. A., Park, J. H., Tan, E. L. & Cho, N. J. A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. J. Mater. Chem. B 5, 4019–4024 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, I. C., Braun, H. P., Krumeich, F., Guntner, A. T. & Pratsinis, S. E. Superior acetone selectivity in gas mixtures by catalyst-filtered chemoresistive sensors. Adv. Sci. 7, 2001503 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Raghu, A. V., Karuppanan, K. K., Nampoothiri, J. & Pullithadathil, B. Wearable, flexible ethanol gas sensor based on TiO2 nanoparticles-grafted 2D-titanium carbide nanosheets. ACS Appl. Nano Mater. 2, 1152–1163 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Maity, D., Rajavel, K. & Kumar, R. T. R. Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sens. Actuators B Chemical 261, 297–306 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wei, H. L., Kumar, P. & Yao, D. J. Printed resistive sensor array combined with a flexible substrate for ethanol and methane detection. ECS J. Solid State Sci. Technol. 9, 115008 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, S. Y. et al. Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires. Sens. Actuators B Chem. 259, 825–832 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, K., Wei, W., Lou, Z., Zhang, H. & Wang, L. L. 1D/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity. Appl. Surface Sci. 479, 209–215 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van den Broek, J., Guntner, A. T. & Pratsinis, S. E. Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sensors 3, 677 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Q. F., Liu, D., Lin, L. M. & Wu, J. M. Bridging interdigitated electrodes by electrochemical-assisted deposition of graphene oxide for constructing flexible gas sensor. Sens. Actuators B Chem. 286, 591–599 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Q., Lee, J. H., Kim, S. J., Lee, H. S. & Lee, W. Excellent isoprene-sensing performance of In2O3 nanoparticles for breath analyzer applications. Sens.s Actuators B Chem. 327, 128892 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saito, N., Haneda, H., Watanabe, K., Shimanoe, K. & Sakaguchi, I. Highly sensitive isoprene gas sensor using Au-loaded pyramid-shaped ZnO particles. Sens. Actuators B Chem. 326, 128999 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, B. Q. et al. Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis. Sens. Actuators B Chem. 309, 127788 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology 29, 455501 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Xue, D. P., Wang, P. T., Zhang, Z. Y. & Wang, Y. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sens. Actuators B Chem. 296, 126710 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Niu, F. et al. Synthesizing metal oxide semiconductors on doped Si/SiO2 flexible fiber substrates for wearable gas sensing. Research 6, 0100 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Z., Mi, Q., Wang, D. Y. & Li, T. T. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuators B Chem. 339, 129923 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. X. et al. Rational design and in situ growth of SnO2/CMF composites: insightful understanding of the formaldehyde gas sensing mechanism and enhanced gas sensing properties. J. Mater. Chem. C 8, 12418–12426 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mani, G. K. & Rayappan, J. B. B. ZnO nanoarchitectures: Ultrahigh sensitive room temperature acetaldehyde sensor. Sens. Actuators B Chem. 223, 343–351 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nakate, U. T., Yu, Y. T. & Park, S. High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sens. Actuators B Chem. 344, 130264 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. X. et al. Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17, 2104997 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tang, N. et al. A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4, 726–732 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guntner, A. T., Wied, M., Pineau, N. J. & Pratsinis, S. E. Rapid and selective NH3 sensing by porous CuBr. Adv. Sci. 7, 1903390 (2020).

    Article 

    Google Scholar
     

  • Zhang, C. et al. Laser processing of crumpled porous graphene/mxene nanocomposites for a standalone gas sensing system. Nano Lett. 23, 3435–3443 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Wearable smart yarn sensor based on ZnO/SnO2 heterojunction for ammonia detecting. J. Mater. Sci. 57, 21946–21959 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alharthy, R. D. & Saleh, A. A novel trace-level ammonia gas sensing based on flexible PAni-CoFe2O4 nanocomposite film at room temperature. Polymers 13, 3077 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshabouna, F. et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater. Today 59, 56–67 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. An integrated flexible self-powered wearable respiration sensor. Nano Energy 63, 103829 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tong, X., Zhang, X. J., Li, J. & Wang, H. Flexible NH3 gas sensor based on TiO2/cellulose nanocrystals composite film at room temperature. J. Mater. Sci. Mater. Electron. 32, 23566–23577 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Serafini, M. et al. A wearable electrochemical gas sensor for ammonia detection. Sensors 21, 7905 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. H. et al. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12, 10434–10442 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. Y., Lee, C. S., Kim, D. H. & Lee, J. H. Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10, 27858–27867 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. L., Wang, J. & Li, X. K. Flexible room-temperature gas sensor based on poly (para-phenylene terephthalamide) fibers substrate coupled with composite NiO@CuO sensing materials for ammonia detection. Ceramics Int. 46, 13827–13834 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. Y. et al. Wearable and flexible bacterial cellulose/polyaniline ammonia sensor based on a synergistic doping strategy. Sens. Actuators B Chem. 334, 129647 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nie, Q. X. et al. Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surfaces a Physicochem. Eng. Aspects 537, 532–539 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12, 52070–52081 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bag, A. et al. A room-temperature operable and stretchable NO2 gas sensor composed of reduced graphene oxide anchored with MOF-derived ZnFe2O4 hollow octahedron. Sens. Actuators B Chem. 346, 130463 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. Y. et al. 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. Sens. Actuators B-Chem. 331, 129371 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duy, L. T. & Seo, H. Eco-friendly, self-healing, and stretchable graphene hydrogels functionalized with diol oligomer for wearable sensing applications. Sens. Actuators B Chem. 321, 128507 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moon, D. B. et al. A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods. Sens. Actuators B Chem. 345, 130373 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Khalifa, M. & Anandhan, S. Highly sensitive and wearable NO2 gas sensor based on PVDF nanofabric containing embedded polyaniline/g-C3N4 nanosheet composites. Nanotechnology 32, 485504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, J., Ryu, C., Jang, I., Jung, S. I. & Kim, H. J. A study of strain effect on stretchable carbon nanotube gas sensors. Mater. Today Commun. 33, 105007 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cho, S. Y. et al. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 13, 9332–9341 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. Y. et al. MXene-Derived TiO2 nanoparticles intercalating between RGO nanosheets: an assembly for highly sensitive gas detection. ACS Appl. Mater. Interfaces 13, 39772–39780 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, W. H. et al. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater. 3, 2545–2553 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hou, C., Tai, G., Liu, Y. & Liu, X. Borophene gas sensor. Nano Res. 15, 2537–2544 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, S. L. et al. Intrinsically flexible CNT-TiO2-Interlaced film for NO sensing at room temperature. Appl. Surface Sci. 579, 152172 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. X. et al. A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, https://doi.org/10.1002/adfm.202300046 (2023).

  • Mahajan, A. & Gasso, S. Self-powered wearable gas sensors based on L-Ascorbate-Treated MXene nanosheets and SnO2 nanofibers. ACS Appl. Nano Mater. 6, 6678–6692 (2023).

    Article 

    Google Scholar
     

  • Li, X. W. et al. Highly flexible all-inorganic nanofiber networks with stress-accommodating microstructure for light-activated wearable chemiresistive sensor. Chem. Eng. J. 455, 140768 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, Z. D. et al. Engineering CuMOF in TiO2 nanochannels as flexible gas sensor for high-performance NO detection at room temperature. ACS Sens. 7, 2750–2758 (2022).

  • Huang, Y. F. et al. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021, 9847285 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, L. J. et al. Facile synthesis of conductive metal-organic frameworks nanotubes for ultrahigh-performance flexible NO sensors. Small Methods 6, 2200581 (2022).

    Article 

    Google Scholar
     

  • Zang, W. et al. Core-Shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 118, 9209–9216 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Asad, M. & Sheikhi, M. H. Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuators B Chem. 231, 474–483 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. G., Tran, T. V. & Lee, J. S. Iron oxide-immobilized porous carbon nanofiber-based radio frequency identification (RFID) tag sensor for detecting hydrogen sulfide. J. Ind. Eng. Chem. 112, 423–429 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. L. et al. Flexible H2S sensors: Fabricated by growing NO2-UiO-66 on electrospun nanofibers for detecting ultralow concentration H2S. Appl. Surface Sci. 573, 151446 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z. Y. et al. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber. J. Hazardous Mater. 411, 125008 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cho, M., Yun, J., Kwon, D., Kim, K. & Park, I. High-sensitivity and low-power flexible schottky hydrogen sensor based on silicon nanomembrane. ACS Appl. Mater. Interfaces 10, 12870–12877 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. H. et al. High-resolution, fast, and shape-conformable hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt. ACS Nano 13, 6071–6082 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nair, K. G., Vishnuraj, R. & Pullithadathil, B. Highly sensitive, flexible H-2 gas sensors based on less platinum bimetallic Ni-Pt nanocatalyst-functionalized carbon nanofibers. ACS Appl. Electron. Mater. 3, 1621–1633 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xie, B. et al. Pd nanoparticle film on a polymer substrate for transparent and flexible hydrogen sensors. ACS Appl. Mater. Interfaces 10, 44603–44613 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. K. et al. Lead-free halide Cs2PtI6 perovskite favoring Pt-N bonding for trace NO detection. ACS Sens. 6, 3800–3807 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punetha, D., Kar, M. & Pandey, S. K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 10, 2151 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X. W. et al. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11, 24533–24543 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, L. H. et al. A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system. Nanotechnology 34, 195501 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. J., Wang, N., Xu, D., Tang, L. & Sheng, B. Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly (ether-ether-ketone). Sens. Actuators B Chem. 375, 132846 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, D., Qiu, L. L., Shea, K. J., Meng, Z. H. & Xue, M. Dyeing and functionalization of wearable silk fibroin/cellulose composite by nanocolloidal array. ACS Appl. Mater. Interfaces 11, 39163–39170 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, C. et al. Ultrasensitive humidity sensing and the multifunctional applications of borophene-MoS2 heterostructures. J. Mater. Chem. A 9, 13100–13108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. Y. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hou, C., Tai, G. A., Liu, B., Wu, Z. H. & Yin, Y. H. Borophene-graphene heterostructure: preparation and ultrasensitive humidity sensing. Nano Res. 14, 2337–2344 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noh, W., Go, Y. & An, H. Y. S. Reduced graphene oxide/polyelectrolyte multilayers for fast resistive humidity sensing. Sensors 23, 1977 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khattak, Z. J., Sajid, M., Javed, M., Rizvi, H. M. Z. & Awan, F. S. Mass-producible 2D nanocomposite-based temperature-independent all-printed relative humidity sensor. ACS Omega 7, 16605–16615 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, D. J. et al. Gas-permeable and highly sensitive, washable and wearable strain sensors based on graphene/carbon nanotubes hybrids e-textile. Composites Part a Appl. Sci. Manuf. 149, 106556 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Q., Pang, W. W., Xie, X., Xu, Y. L. & Yuan, W. J. Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. J. Mater. Chem. A 10, 15634–15646 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. C. et al. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring. ACS Appl. Mater. Interfaces 14, 1874–1884 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, T. C., et al., Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid-solid/gas-solid coupled triboelectric nanogenerator. Adv. Sci. 9, (2022).

  • Sun, S., Hao, F. Y. & Maimaitiyiming, X. 3D print polyaniline/gelatin hydrogels as wearable multifunctional sensors. Chemistryselect. 7 (2022).

  • Hu, J. S. et al. Nano carbon black-based high performance wearable pressure sensors. Nanomaterials 10, 664 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, S. W., Yu, J. T., Xiao, Y., Zhu, Y. Y. & Zhang, W. L. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface. ACS Appl. Mater. Interfaces 11, 20500–20508 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 72, 104706 (2020).

    Article 

    Google Scholar
     

  • Jiang, D. et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 15, 5000–5010 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, M. Y. et al. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15, 9746–9758 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Q. et al. Lithography-free formation of controllable microdomes via droplet templates for robust, ultrasensitive, and flexible pressure sensors. ACS Appl. Nano Mater. 2, 7178–7187 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring. Carbon 189, 430–442 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ren, H. Y. et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13, 5541–5548 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondal, S., Min, B. K., Yi, Y., Nguyen, V. T. & Choi, C. G. Gamma-ray tolerant flexible pressure-temperature sensor for nuclear radiation environment. Adv. Mater. Technol. 6, 2001039 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. R. et al. Direct laser patterning of free-standing rgo electrodes for wearable capacitive pressure sensors. IEEE Photon. Technol. Lett. 34, 1361–1364 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eatemadi, A. et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9, 393 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayser, L. V. & Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31, 1806133 (2019).

    Article 

    Google Scholar
     

  • Naguib, M., Barsoum, M. W. & Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vaughan, J. et al. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur. Respir. J. 22, 889–894 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitsubayashi, K. et al. Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sens. Actuators B Chem. 95, 373–377 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Tentzeris, M. M., Nikolaou, S. & IEEE. RFID-enabled ultrasensitive wireless sensors utilizing inkjet-printed antennas and carbon nanotubes for gas detection applications. In Proc IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (Comcas 2009), (IEEE Xplore, 2009).

  • Jia, H. Y., Wang, J., Zhang, X. Y. & Wang, Y. P. Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Lett. 3, 86–90 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. Q., Yao, J. D., Wang, B. & Yang, G. W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 5, 11070 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, M. A. et al. Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Adv. 8, 11991–11996 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiu, B. C., Liu, Y. L., Yuan, Q. Y., Lou, C. W. & Lin, J. H. Preparation and characterization of PEDOT:PSS/TiO2 micro/nanofiber-based gas sensors. Polymers 14, 1780 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. et al. Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process. Adv. Mater. 34, 2107696 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, K. et al. Rough-surface-enabled capacitive pressure sensors with 3D touch capability. Small 13, 1700368 (2017).

    Article 

    Google Scholar
     

  • Haick, H., Broza, Y. Y., Mochalski, P., Ruzsanyi, V. & Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43, 1423–1449 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar