Virus nanotechnology for intratumoural immunotherapy – Nature Reviews Bioengineering

  • Murciano-Goroff, Y. R., Warner, A. B. & Wolchok, J. D. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 30, 507–519 (2020).

    Article 

    Google Scholar
     

  • Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    Article 

    Google Scholar
     

  • Cameron, F., Whiteside, G. & Perry, C. Ipilimumab: first global approval. Drugs 71, 1093–1104 (2011).

    Article 

    Google Scholar
     

  • Mullard, A. FDA approves first CAR T therapy. Nat. Rev. Drug. Discov. 16, 669–669 (2017).


    Google Scholar
     

  • Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug. Discov. 18, 175–196 (2019).

    Article 

    Google Scholar
     

  • Ledford, H., Else, H. & Warren, M. Cancer immunologists scoop medicine Nobel prize. Nature 562, 20–21 (2018).

    Article 

    Google Scholar
     

  • Katze, M. G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    Article 

    Google Scholar
     

  • Murgas, P. et al. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer. Cancer Immunol. Immunother. 67, 183–193 (2018).

    Article 

    Google Scholar
     

  • Lizotte, P. H. et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11, 295–303 (2016).

    Article 

    Google Scholar
     

  • Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article 

    Google Scholar
     

  • Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article 

    Google Scholar
     

  • Chao, Y. & Liu, Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat. Rev. Bioeng. 1, 125–138 (2023).

    Article 

    Google Scholar
     

  • Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    Article 

    Google Scholar
     

  • Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B 147, 258–267 (1957).

    Article 

    Google Scholar
     

  • Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article 

    Google Scholar
     

  • Quesada, J. R. et al. Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood 68, 493–497 (1986).

    Article 

    Google Scholar
     

  • Hauschild, A. et al. Practical guidelines for the management of interferon-α-2b side effects in patients receiving adjuvant treatment for melanoma: expert opinion. Cancer 112, 982–994 (2008).

    Article 

    Google Scholar
     

  • Wills, R. J. Clinical pharmacokinetics of interferons. Clin. Pharmacokinet. 19, 390–399 (1990).

    Article 

    Google Scholar
     

  • Brown, M. C. et al. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci. Transl. Med. 9, eaan4220 (2017).

    Article 

    Google Scholar
     

  • Sabree, S. A. et al. Monocytes exposed to immune complexes reduce pDC type 1 interferon response to vidutolimod. Vaccines 9, 982 (2021).

    Article 

    Google Scholar
     

  • Lebel, M.-È. et al. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Lett. 16, 1826–1832 (2016).

    Article 

    Google Scholar
     

  • Mao, C., Beiss, V., Fields, J., Steinmetz, N. F. & Fiering, S. Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent Toll-like receptors. Biomaterials 275, 120914 (2021).

    Article 

    Google Scholar
     

  • Zeltins, A. Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 53, 92–107 (2013).

    Article 

    Google Scholar
     

  • Coley, W. B. II. Contribution to the knowledge of sarcoma. Ann. Surg. 14, 199–220 (1891).

    Article 

    Google Scholar
     

  • Starnes, C. O. Coley’s toxins. Nature 360, 23 (1992).

    Article 

    Google Scholar
     

  • Ehrlich, P. Ueber den jetzigen Stand Der Karzinomforchung. Nederl. Tijdschr. Geneeskd. 53, 273–290 (1909).


    Google Scholar
     

  • Burnet, F. M. Immunological surveillance in neoplasia. Transpl. Rev. 7, 3–25 (1971).


    Google Scholar
     

  • Burnet, M. Cancer — a biological approach: III. Viruses associated with neoplastic conditions. IV. Practical applications. Br. Med. J. 1, 841 (1957).

    Article 

    Google Scholar
     

  • Melero, I., Castanon, E., Alvarez, M., Champiat, S. & Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 18, 558–576 (2021).

    Article 

    Google Scholar
     

  • Sheen, M. R. & Fiering, S. In situ vaccination: harvesting low hanging fruit on the cancer immunotherapy tree. WIREs Nanomed. Nanobiotechnol. 11, e1524 (2019).

    Article 

    Google Scholar
     

  • Russell, S. J., Peng, K.-W. & Bell, J. C. Oncolytic virotherapy. Nat. Biotechnol. 30, 658–670 (2012).

    Article 

    Google Scholar
     

  • Breitbach, C. J. et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477, 99–102 (2011).

    Article 

    Google Scholar
     

  • Maroun, J. et al. Designing and building oncolytic viruses. Future Virol. 12, 193–213 (2017).

    Article 

    Google Scholar
     

  • Wang, Y. L., Peng, H. H., Su, S. Y. & Lin, C. T. Combined immunotherapy (OK-432, IL-2) with chemotherapy decrease the recurrence rate in advanced ovarian cancer. Reprod. Sci. 26, 244–249 (2019).

    Article 

    Google Scholar
     

  • Shalhout, S. Z., Miller, D. M., Emerick, K. S. & Kaufman, H. L. Therapy with oncolytic viruses: progress and challenges. Nat. Rev. Clin. Oncol. 20, 160–177 (2023).

    Article 

    Google Scholar
     

  • Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article 

    Google Scholar
     

  • Puts, M. T. E. et al. Factors influencing adherence to cancer treatment in older adults with cancer: a systematic review. Ann. Oncol. 25, 564–577 (2014).

    Article 

    Google Scholar
     

  • Chung, Y. H. et al. Integrating plant molecular farming and materials research for next-generation vaccines. Nat. Rev. Mater. 7, 372–388 (2022).

    Article 

    Google Scholar
     

  • Beijerinck, M. W. Ueber ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblatter [transl. Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves.] Verhandelingen der Koninklyke akademie van Wettenschappen te Amsterdam [transl. American Phytopathological Society] https://dwc.knaw.nl/DL/publications/PU00011860.pdf (1898).

  • Scholthof, K. B. Tobacco mosaic virus: a model system for plant biology. Annu. Rev. Phytopathol. 42, 13–34 (2004).

    Article 

    Google Scholar
     

  • Lomonossoff, G. P. & Wege, C. TMV particles: the journey from fundamental studies to bionanotechnology applications. Adv. Virus Res. 102, 149–176 (2018).

    Article 

    Google Scholar
     

  • Kausche, G. A., Pfankuch, E. & Ruska, H. Die Sichtbarmachung von pflanzlichem virus im Übermikroskop. Naturwissenschaften 27, 292–299 (1939).

    Article 

    Google Scholar
     

  • Caspar, D. L. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article 

    Google Scholar
     

  • Strable, E. & Finn, M. G. Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol. 327, 1–21 (2009).


    Google Scholar
     

  • Wang, Q., Lin, T., Tang, L., Johnson, J. E. & Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Edn Engl. 41, 459–462 (2002).

    <a data-track="click||click_references" rel="nofollow noopener" data-track-label="10.1002/1521-3773(20020201)41:33.0.CO;2-O” data-track-item_id=”10.1002/1521-3773(20020201)41:33.0.CO;2-O” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-3773%2820020201%2941%3A3%3C459%3A%3AAID-ANIE459%3E3.0.CO%3B2-O” aria-label=”Article reference 46″ data-doi=”10.1002/1521-3773(20020201)41:33.0.CO;2-O”>Article 

    Google Scholar
     

  • Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    Article 

    Google Scholar
     

  • McNeale, D., Dashti, N., Cheah, L. C. & Sainsbury, F. Protein cargo encapsulation by virus-like particles: strategies and applications. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 15, e1869 (2023).

    Article 

    Google Scholar
     

  • Bischoff, A. J. et al. Protein-based model for energy transfer between photosynthetic light-harvesting complexes is constructed using a direct protein–protein conjugation strategy. J. Am. Chem. Soc. 145, 15827–15837 (2023).

    Article 

    Google Scholar
     

  • Dai, J. et al. A membrane-associated light-harvesting model is enabled by functionalized assemblies of gene-doubled TMV proteins. Small 19, e2207805 (2023).

    Article 

    Google Scholar
     

  • Oh, D. et al. Biologically enhanced cathode design for improved capacity and cycle life for lithium–oxygen batteries. Nat. Commun. 4, 2756 (2013).

    Article 

    Google Scholar
     

  • Tseng, R. J. et al. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol. 1, 72–77 (2006).

    Article 

    Google Scholar
     

  • Carette, N. et al. A virus-based biocatalyst. Nat. Nanotechnol. 2, 226–229 (2007).

    Article 

    Google Scholar
     

  • Patterson, D. P., Schwarz, B., Waters, R. S., Gedeon, T. & Douglas, T. Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem. Biol. 9, 359–365 (2014).

    Article 

    Google Scholar
     

  • Bucci, M. Milestones: First recombinant DNA vaccine for HBV. Nature https://www.nature.com/articles/d42859-020-00016-5 (2020).

  • Valenzuela, P., Medina, A., Rutter, W. J., Ammerer, G. & Hall, B. D. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298, 347–350 (1982).

    Article 

    Google Scholar
     

  • Crystal, R. G. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3–11 (2014).

    Article 

    Google Scholar
     

  • Zabner, J. et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207–216 (1993).

    Article 

    Google Scholar
     

  • Garber, K. China approves world’s first oncolytic virus therapy for cancer treatment. J. Natl Cancer Inst. 98, 298–300 (2006).

    Article 

    Google Scholar
     

  • Greig, S. L. Talimogene laherparepvec: first global approval. Drugs 76, 147–154 (2016).

    Article 

    Google Scholar
     

  • Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article 

    Google Scholar
     

  • Shahrivarkevishahi, A. et al. Virus-like particles: a self-assembled toolbox for cancer therapy. Mater. Today Chem. 24, 100808 (2022).

    Article 

    Google Scholar
     

  • Bachmann, M. F. et al. The influence of antigen organization on B cell responsiveness. Science 262, 1448–1451 (1993).

    Article 

    Google Scholar
     

  • Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article 

    Google Scholar
     

  • Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug. Discov. 14, 642–662 (2015).

    Article 

    Google Scholar
     

  • Alberts, P., Tilgase, A., Rasa, A., Bandere, K. & Venskus, D. The advent of oncolytic virotherapy in oncology: the Rigvir® story. Eur. J. Pharmacol. 837, 117–126 (2018).

    Article 

    Google Scholar
     

  • Liang, M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr. Cancer Drug. Targets 18, 171–176 (2018).

    Article 

    Google Scholar
     

  • Fukuhara, H., Ino, Y. & Todo, T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 107, 1373–1379 (2016).

    Article 

    Google Scholar
     

  • Chaurasiya, S., Chen, N. G. & Fong, Y. Oncolytic viruses and immunity. Curr. Opin. immunology 51, 83–90 (2018).

    Article 

    Google Scholar
     

  • Prestwich, R. J. et al. Oncolytic viruses: a novel form of immunotherapy. Expert. Rev. Anticancer. Ther. 8, 1581–1588 (2008).

    Article 

    Google Scholar
     

  • Chiocca, E. A. & Rabkin, S. D. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol. Res. 2, 295–300 (2014).

    Article 

    Google Scholar
     

  • Aurelian, L. Oncolytic viruses as immunotherapy: progress and remaining challenges. Onco Targets Ther. 9, 2627–2637 (2016).

    Article 

    Google Scholar
     

  • Tian, Y., Xie, D. & Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal. Transduct. Target. Ther. 7, 117 (2022).

    Article 

    Google Scholar
     

  • Jhawar, S. R. et al. Oncolytic viruses — natural and genetically engineered cancer immunotherapies. Front. Oncol. 7, 202 (2017).

    Article 

    Google Scholar
     

  • Anderson, B. D., Nakamura, T., Russell, S. J. & Peng, K. W. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 64, 4919–4926 (2004).

    Article 

    Google Scholar
     

  • Malissen, N. et al. HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. Oncoimmunology 8, e1665976 (2019).

    Article 

    Google Scholar
     

  • Oshima, T. et al. Nectin-2 is a potential target for antibody therapy of breast and ovarian cancers. Mol. Cancer 12, 60 (2013).

    Article 

    Google Scholar
     

  • Yamada, M. et al. Nectin-1 expression in cancer-associated fibroblasts is a predictor of poor prognosis for pancreatic ductal adenocarcinoma. Surg. Today 48, 510–516 (2018).

    Article 

    Google Scholar
     

  • Davidson, B. et al. αV- and β1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol. Oncol. 90, 248–257 (2003).

    Article 

    Google Scholar
     

  • Kohlhapp, F., Zloza, A. & Kaufman, H. Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs Today 51, 549–558 (2015).

    Article 

    Google Scholar
     

  • Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article 

    Google Scholar
     

  • Carlsten, M. et al. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J. Immunol. 183, 4921–4930 (2009).

    Article 

    Google Scholar
     

  • Yang, M. et al. A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol. Ther. 18, 833–840 (2017).

    Article 

    Google Scholar
     

  • Puig-Saus, C. et al. iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy. Gene Ther. 21, 767–774 (2014).

    Article 

    Google Scholar
     

  • Martinez-Velez, N. et al. The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nat. Commun. 10, 2235 (2019).

    Article 

    Google Scholar
     

  • Judd, J. et al. Tunable protease-activatable virus nanonodes. ACS Nano 8, 4740–4746 (2014).

    Article 

    Google Scholar
     

  • van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article 

    Google Scholar
     

  • Shi, Y. & Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res. 52, 1543–1554 (2019).

    Article 

    Google Scholar
     

  • Bhagwat, A. S. & Vakoc, C. R. Targeting transcription factors in cancer. Trends Cancer 1, 53–65 (2015).

    Article 

    Google Scholar
     

  • Critchley-Thorne, R. J. et al. Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl Acad. Sci. USA 106, 9010–9015 (2009).

    Article 

    Google Scholar
     

  • Matveeva, O. V. & Chumakov, P. M. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev. Med. Virol. 28, e2008 (2018).

    Article 

    Google Scholar
     

  • Kaloni, D., Diepstraten, S. T., Strasser, A. & Kelly, G. L. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 28, 20–38 (2023).

    Article 

    Google Scholar
     

  • Trisciuoglio, D. et al. BCL-X overexpression promotes tumor progression-associated properties. Cell Death Dis. 8, 3216 (2017).

    Article 

    Google Scholar
     

  • Mansour, M., Palese, P. & Zamarin, D. Oncolytic specificity of newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J. Virol. 85, 6015–6023 (2011).

    Article 

    Google Scholar
     

  • Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).


    Google Scholar
     

  • DeWeese, T. L. et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61, 7464–7472 (2001).


    Google Scholar
     

  • Gujar, S., Pol, J. G., Kim, Y., Lee, P. W. & Kroemer, G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 39, 209–221 (2018).

    Article 

    Google Scholar
     

  • Kelly, K. R. et al. Oncolytic reovirus sensitizes multiple myeloma cells to anti-PD-L1 therapy. Leukemia 32, 230–233 (2018).

    Article 

    Google Scholar
     

  • Feist, M. et al. Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther. 28, 98–111 (2021).

    Article 

    Google Scholar
     

  • Chouljenko, D. V. et al. Induction of durable antitumor response by a novel oncolytic herpesvirus expressing multiple immunomodulatory transgenes. Biomedicines 8, 484 (2020).

    Article 

    Google Scholar
     

  • Wenthe, J. et al. Immunostimulatory oncolytic virotherapy for multiple myeloma targeting 4-1BB and/or CD40. Cancer Gene Ther. 27, 948–959 (2020).

    Article 

    Google Scholar
     

  • Ylösmäki, E. et al. Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Mol. Ther. Oncolyt. 20, 459–469 (2021).

    Article 

    Google Scholar
     

  • Eriksson, E. et al. Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Ther. 24, 92–103 (2017).

    Article 

    Google Scholar
     

  • Lee, J.-C. et al. Tolerability and safety of EUS-injected adenovirus-mediated double-suicide gene therapy with chemotherapy in locally advanced pancreatic cancer: a phase 1 trial. Gastrointest. Endosc. 92, 1044–1052.e1041 (2020).

    Article 

    Google Scholar
     

  • Doronin, K. et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J. Virol. 74, 6147–6155 (2000).

    Article 

    Google Scholar
     

  • Barton, K. N. et al. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol. Ther. 13, 347–356 (2006).

    Article 

    Google Scholar
     

  • Boorjian, S. A. et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 22, 107–117 (2021).

    Article 

    Google Scholar
     

  • Shin, D. H. et al. Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. J. Immunother. Cancer 9, e002086 (2021).

    Article 

    Google Scholar
     

  • Liu, B. et al. ICP34. 5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 10, 292–303 (2003).

    Article 

    Google Scholar
     

  • Chou, J. & Roizman, B. The gamma 1 (34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc. Natl Acad. Sci. USA 89, 3266–3270 (1992).

    Article 

    Google Scholar
     

  • Gromeier, M., Lachmann, S., Rosenfeld, M. R., Gutin, P. H. & Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl Acad. Sci. USA 97, 6803–6808 (2000).

    Article 

    Google Scholar
     

  • Yun, C.-O., Hong, J. & Yoon, A. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front. Immunol. 13, 953410 (2022).

    Article 

    Google Scholar
     

  • Smith, T. et al. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus–adenovirus receptor. Mol. Ther. 5, 770–779 (2002).

    Article 

    Google Scholar
     

  • Groeneveldt, C., van den Ende, J. & van Montfoort, N. Preexisting immunity: barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor. Rev. 70, 1–12 (2023).

    Article 

    Google Scholar
     

  • Wakimoto, H. et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol. Ther. 5, 275–282 (2002).

    Article 

    Google Scholar
     

  • Nosaki, K. et al. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity. Mol. Ther. Oncolytics 3, 16022 (2016).

    Article 

    Google Scholar
     

  • Huang, H. W. et al. Full encapsulation of oncolytic virus using hybrid erythroctye-liposome membranes for augmented anti-refractory tumor effectiveness. Nano Today 47, 101671 (2022).

    Article 

    Google Scholar
     

  • Xia, M. et al. Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy. J. Exp. Clin. Cancer Res. 38, 408 (2019).

    Article 

    Google Scholar
     

  • Rojas, L. A. et al. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J. Control. Rel. 237, 78–88 (2016).

    Article 

    Google Scholar
     

  • Martinez-Quintanilla, J., He, D., Wakimoto, H., Alemany, R. & Shah, K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol. Ther. 23, 108–118 (2015).

    Article 

    Google Scholar
     

  • Hammad, M. et al. Neural stem cells improve the delivery of oncolytic chimeric orthopoxvirus in a metastatic ovarian cancer model. Mol. Ther. Oncolyt. 18, 326–334 (2020).

    Article 

    Google Scholar
     

  • Cornejo, Y. et al. NSCs are permissive to oncolytic Myxoma virus and provide a delivery method for targeted ovarian cancer therapy. Oncotarget 11, 4693 (2020).

    Article 

    Google Scholar
     

  • Andtbacka, R. H. I. et al. Clinical responses of oncolytic coxsackievirus A21 (V937) in patients with unresectable melanoma. J. Clin. Oncol. 39, 3829–3838 (2021).

    Article 

    Google Scholar
     

  • Breitbach, C. J., Moon, A., Burke, J., Hwang, T. H. & Kirn, D. H. A phase 2, open-label, randomized study of pexa-vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma. Methods Mol. Biol. 1317, 343–357 (2015).

    Article 

    Google Scholar
     

  • Lin, D., Shen, Y. & Liang, T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal. Transduct. Target. Ther. 8, 156 (2023).

    Article 

    Google Scholar
     

  • Alonso-Miguel, D. et al. Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against canine inflammatory mammary cancer. J. Immunother. Cancer 10, e004044 (2022).

    Article 

    Google Scholar
     

  • Mao, C. et al. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade. J. Immunother. Cancer 10, e005834 (2022).

    Article 

    Google Scholar
     

  • Shukla, S., Wang, C., Beiss, V. & Steinmetz, N. F. Antibody response against cowpea mosaic viral nanoparticles improves in situ vaccine efficacy in ovarian cancer. ACS Nano 14, 2994–3003 (2020).

    Article 

    Google Scholar
     

  • Valdivia, G. et al. Neoadjuvant intratumoral immunotherapy with cowpea mosaic virus induces local and systemic antitumor efficacy in canine mammary cancer patients. Cells 12, 2241 (2023).

    Article 

    Google Scholar
     

  • Davies, J. W. Molecular Plant Virology (CRC Press, 1985).

  • Yang, S. et al. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus. J. Mol. Biol. 422, 263–273 (2012).

    Article 

    Google Scholar
     

  • Denis, J. et al. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine 26, 3395–3403 (2008).

    Article 

    Google Scholar
     

  • Lebel, M. E. et al. Nanoparticle adjuvant sensing by TLR7 enhances CD8+ T cell-mediated protection from Listeria monocytogenes infection. J. Immunol. 192, 1071–1078 (2014).

    Article 

    Google Scholar
     

  • Mathieu, C., Rioux, G., Dumas, M. C. & Leclerc, D. Induction of innate immunity in lungs with virus-like nanoparticles leads to protection against influenza and Streptococcus pneumoniae challenge. Nanomedicine 9, 839–848 (2013).

    Article 

    Google Scholar
     

  • Lee, K. L. et al. Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett. 17, 4019–4028 (2017).

    Article 

    Google Scholar
     

  • Eriksson, F. et al. Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J. Immunol. 182, 3105–3111 (2009).

    Article 

    Google Scholar
     

  • Tian, Y. et al. Probing the endocytic pathways of the filamentous bacteriophage in live cells using ratiometric pH fluorescent indicator. Adv. Healthc. Mater. 4, 413–419 (2015).

    Article 

    Google Scholar
     

  • Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view. Nat. Rev. Microbiol. 4, 837–848 (2006).

    Article 

    Google Scholar
     

  • Krupovic, M., Cvirkaite-Krupovic, V., Iranzo, J., Prangishvili, D. & Koonin, E. V. Viruses of Archaea: structural, functional, environmental and evolutionary genomics. Virus Res. 244, 181–193 (2018).

    Article 

    Google Scholar
     

  • Young, T. D. A. M. Viruses: making friends with old foes. Science 312, 873–875 (2006).

    Article 

    Google Scholar
     

  • De Lombaerde, E., De Wever, O. & De Geest, B. G. Delivery routes matter: safety and efficacy of intratumoral immunotherapy. Biochim. Biophys. Acta Rev. Cancer 1875, 188526 (2021).

    Article 

    Google Scholar
     

  • Tariq, H., Batool, S., Asif, S., Ali, M. & Abbasi, B. H. Virus-like particles: revolutionary platforms for developing vaccines against emerging infectious diseases. Front. Microbiol. 12, 790121 (2021).

    Article 

    Google Scholar
     

  • Sabree, S. A. et al. Direct and indirect immune effects of CMP-001, a virus-like particle containing a TLR9 agonist. J. Immunother. Cancer 9, e002484 (2021).

    Article 

    Google Scholar
     

  • Cai, H., Shukla, S. & Steinmetz, N. F. The antitumor efficacy of CpG oligonucleotides is improved by encapsulation in plant virus-like particles. Adv. Funct. Mater. 30, 1908743 (2020).

    Article 

    Google Scholar
     

  • Jung, E., Chung, Y. H. & Steinmetz, N. F. TLR agonists delivered by plant virus and bacteriophage nanoparticles for cancer immunotherapy. Bioconjug. Chem. 34, 1596–1605 (2023).

    Article 

    Google Scholar
     

  • Storni, T. et al. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol. 172, 1777–1785 (2004).

    Article 

    Google Scholar
     

  • Krug, A. et al. Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. Eur. J. Immunol. 31, 2154–2163 (2001).

    <a data-track="click||click_references" rel="nofollow noopener" data-track-label="10.1002/1521-4141(200107)31:73.0.CO;2-U” data-track-item_id=”10.1002/1521-4141(200107)31:73.0.CO;2-U” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-4141%28200107%2931%3A7%3C2154%3A%3AAID-IMMU2154%3E3.0.CO%3B2-U” aria-label=”Article reference 147″ data-doi=”10.1002/1521-4141(200107)31:73.0.CO;2-U”>Article 

    Google Scholar
     

  • Mutwiri, G. K., Nichani, A. K., Babiuk, S. & Babiuk, L. A. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J. Control. Rel. 97, 1–17 (2004).

    Article 

    Google Scholar
     

  • Cheng, Y. et al. In situ immunization of a TLR9 agonist virus-like particle enhances anti-PD1 therapy. J. Immunother. Cancer 8, e000940 (2020).

    Article 

    Google Scholar
     

  • Lemke-Miltner, C. D. et al. Antibody opsonization of a TLR9 agonist-containing virus-like particle enhances in situ immunization. J. Immunol. 204, 1386–1394 (2020).

    Article 

    Google Scholar
     

  • Bakhos Jneid, A. B. et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci. Immunol. 8, 1–17 (2023).


    Google Scholar
     

  • Cerullo, V. et al. An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol. Ther. 20, 2076–2086 (2012).

    Article 

    Google Scholar
     

  • Zhang, P., Han, X., Tan, W., Chen, D. & Sun, Q. RIG-I-mediated innate immune signaling in tumors reduces the therapeutic effect of oncolytic vesicular stomatitis virus. Thorac. Cancer 14, 246–253 (2023).

    Article 

    Google Scholar
     

  • Thorne, S. H. Adding STING to the tale of oncolytic virotherapy. Trends Cancer 2, 67–68 (2016).

    Article 

    Google Scholar
     

  • Westcott, P. M. K. et al. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat. Genet. 55, 1686–1695 (2023).

    Article 

    Google Scholar
     

  • Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).

    Article 

    Google Scholar
     

  • Hom, V., Karonis, E., Sigidi, T. & Cawley, K. Development of a nursing policy for the administration of an oncolytic virus in the outpatient setting. Semin. Oncol. Nurs. 35, 150928 (2019).

    Article 

    Google Scholar
     

  • Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    Article 

    Google Scholar
     

  • Bommareddy, P. A.-O., Aspromonte, S., Zloza, A., Rabkin, S. A.-O. & Kaufman, H. L. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci. Transl. Med. 10, eaau0417 (2018).

    Article 

    Google Scholar
     

  • Wang, C. & Steinmetz, N. F. A combination of cowpea mosaic virus and immune checkpoint therapy synergistically improves therapeutic efficacy in three tumor models. Adv. Funct. Mater. 30, 2002299 (2020).

    Article 

    Google Scholar
     

  • Passaro, C. et al. Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Clin. Cancer Res. 25, 290–299 (2019).

    Article 

    Google Scholar
     

  • Zamarin, D. et al. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J. Clin. Invest. 128, 1413–1428 (2018).

    Article 

    Google Scholar
     

  • Shakoora, A. S. et al. Direct and indirect immune effects of CMP-001, a virus-like particle containing a TLR9 agonist. J. Immunother. Cancer 9, e002484 (2021).

    Article 

    Google Scholar
     

  • Yinwen, C. et al. in situ immunization of a TLR9 agonist virus-like particle enhances anti-PD1 therapy. J. Immunother. Cancer 8, e000940 (2020).

    Article 

    Google Scholar
     

  • Ribas, A. et al. Overcoming PD-1 blockade resistance with CpG — a Toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. 11, 2998–3007 (2021).

    Article 

    Google Scholar
     

  • Dummer, R. et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: a randomized, open-label, phase 2 trial. Nat. Med. 27, 1789–1796 (2021).

    Article 

    Google Scholar
     

  • Hong, W. X. et al. Intratumoral immunotherapy for early-stage solid tumors. Clin. Cancer Res. 26, 3091–3099 (2020).

    Article 

    Google Scholar
     

  • Munoz, N. M. et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J. Immunother. Cancer 9, e001800 (2021).

    Article 

    Google Scholar
     

  • Mohsen, M. O. et al. In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma. J. Immunother. Cancer 10, e004643 (2022).

    Article 

    Google Scholar
     

  • Packiam, V. T. et al. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: interim results. Urol. Oncol. 36, 440–447 (2018).

    Article 

    Google Scholar
     

  • Nassiri, F. et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat. Med. 29, 1370–1378 (2023).

    Article 

    Google Scholar
     

  • Gallego Perez-Larraya, J. et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N. Engl. J. Med. 386, 2471–2481 (2022).

    Article 

    Google Scholar
     

  • Fares, J. et al. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncol. 22, 1103–1114 (2021).

    Article 

    Google Scholar
     

  • Beasley, G. M. et al. Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J. Immunother. Cancer 9, e002203 (2021).

    Article 

    Google Scholar
     

  • Rudin, C. M. et al. Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin. Cancer Res. 17, 888–895 (2011).

    Article 

    Google Scholar
     

  • Lutzky, J. et al. Phase 1b study of intravenous coxsackievirus A21 (V937) and ipilimumab for patients with metastatic uveal melanoma. J. Cancer Res. Clin. 1449, 6059–6066 (2023).

    Article 

    Google Scholar
     

  • Senzer, N. N. et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 27, 5763–5771 (2009).

    Article 

    Google Scholar
     

  • Andtbacka, R. H. et al. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 38, 1752–1758 (2016).

    Article 

    Google Scholar
     

  • Chesney, J. A. et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial. J. Immunother. Cancer 11, e006270 (2023).

    Article 

    Google Scholar
     

  • Streby, K. A. et al. First-in-human intravenous seprehvir in young cancer patients: a phase 1 clinical trial. Mol. Ther. 27, 1930–1938 (2019).

    Article 

    Google Scholar
     

  • Streby, K. A. et al. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin. Cancer Res. 23, 3566–3574 (2017).

    Article 

    Google Scholar
     

  • Geletneky, K. et al. Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: parvOryx01 protocol. BMC Cancer 12, 99 (2012).

    Article 

    Google Scholar
     

  • Hwang, T. H. et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol. Ther. 19, 1913–1922 (2011).

    Article 

    Google Scholar
     

  • Heo, J. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 19, 329–336 (2013).

    Article 

    Google Scholar
     

  • Holloway, R. W. et al. Clinical activity of olvimulogene nanivacirepvec-primed immunochemotherapy in heavily pretreated patients with platinum-resistant or platinum-refractory ovarian cancer: the nonrandomized phase 2 VIRO-15 clinical trial. JAMA Oncol. 9, 903–908 (2023).

    Article 

    Google Scholar
     

  • Le Gall, O. et al. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T=3 virion architecture. Arch. Virol. 153, 715–727 (2008).

    Article 

    Google Scholar
     

  • Lin, T. & Johnson, J. E. Structures of picorna-like plant viruses: implications and applications. Adv. Virus Res. 62, 167–239 (2003).

    Article 

    Google Scholar
     

  • Brown, M. C. et al. Oncolytic polio virotherapy of cancer. Cancer 120, 3277–3286 (2014).

    Article 

    Google Scholar
     

  • Walton, R. W., Brown, M. C., Sacco, M. T. & Gromeier, M. Engineered oncolytic poliovirus PVSRIPO subverts MDA5-dependent innate immune responses in cancer cells. J. Virol. 92, e00879–e00918 (2018).

    Article 

    Google Scholar
     

  • Lomonossoff, G. P. in Encyclopedia of Virology 569–574 (Elsevier, 2008).

  • Shukla, S. et al. The unique potency of cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater. Sci. 8, 5489–5503 (2020).

    Article 

    Google Scholar
     

  • Beiss, V., Mao, C., Fiering, S. N. & Steinmetz, N. F. Cowpea mosaic virus outperforms other members of the secoviridae as in situ vaccine for cancer immunotherapy. Mol. Pharm. 19, 1573–1585 (2022).

    Article 

    Google Scholar
     

  • Argos, P., Kamer, G., Nicklin, M. J. H. & Wimmer, E. Similarity in gene organization and homology between proteins of animal picomaviruses and a plant comovirus suggest common ancestry of these virus families. Nucl. Acids Res. 12, 7251–7267 (1984).

    Article 

    Google Scholar
     

  • Franssen, H., Leunissen, J., Goldbach, R., Lomonossoff, G. & Zimmern, D. Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses. EMBO J. 3, 855–861 (1984).

    Article 

    Google Scholar
     

  • Beck, M. A. et al. Comoviruses and enteroviruses share a T cell epitope. Virology 186, 238–246 (1992).

    Article 

    Google Scholar
     

  • Tripathi, N. K. & Shrivastava, A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front. Bioeng. Biotechnol. 7, 420 (2019).

    Article 

    Google Scholar
     

  • Wellink, J. Comovirus isolation and RNA extraction. Methods Mol. Biol. 81, 205–209 (1998).


    Google Scholar
     

  • Coalition for Epidemic Preparedness Innovations (CEPI). Plant-based ALiCE® technology could shave weeks off vaccine production. CEPI https://cepi.net/plant-based-alicer-technology-could-shave-weeks-vaccine-production (2024).

  • Lee, J., Lee, S. K., Park, J. S. & Lee, K. R. Plant-made pharmaceuticals: exploring studies for the production of recombinant protein in plants and assessing challenges ahead. Plant. Biotechnol. Rep. 17, 53–65 (2023).


    Google Scholar
     

  • Alam, A. et al. Technoeconomic modeling of plant-based griffithsin manufacturing. Front. Bioeng. Biotechnol. 6, 102 (2018).

    Article 

    Google Scholar
     

  • Nandi, S. et al. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. MAbs 8, 1456–1466 (2016).

    Article 

    Google Scholar
     

  • Holtz, B. R. et al. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant. Biotechnol. J. 13, 1180–1190 (2015).

    Article 

    Google Scholar