Validation of SSR markers for identification of high-yielding and Phytophthora Capsici root rot resistant chilli genotypes

  • Granke, L. L., Quesada-Ocampo, L., Lamour, K. & Hausbeck, M. K. advances in research on Phytophthora capsici on vegetable crops in the United States. Plant. Dis. 96, 1588–1600 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Fao.org/faostat/en/#data/QCL. Crops and livestock products. Food and Agriculture Organization of the United Nations, Rome, Italy. (2021).

  • Economic survey of Pakistan. Agriculture. Ministry of Finance, Government of Pakistan. Islamabad Pakistan 19–30 (2022–2023).

  • Lamour, K. H., Stam, R., Jupe, J. & Huitema, E. The oomycete broad-host‐range pathogen Phytophthora Capsici. Mol. Plant. Pathol. 13, 329–337 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Islam, S. Z., Babadoost, M., Lambert, K. N., Ndeme, A. & Fouly, H. M. Characterization of Phytophthora Capsici isolates from processing pumpkin in Illinois. Plant. Dis. 89, 191–197 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rai, G. S. & Guest, D. I. Drainage, animal manures and fungicides reduce Phytophthora wilt (caused by Phytophthora Capsici) of Chilli (Capsicum annuum L.) in Bhutan. Australas Plant. Pathol. 50, 169–177 (2021).

    Article 

    Google Scholar
     

  • Waszczak, C., Carmody, M. & Kangasjärvi, J. Reactive oxygen species in plant signaling. Annu. Rev. Plant. Biol. 69, 209–236 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ishaq, L. et al. Abundance of arbuscular mycorrhizal fungi in the rhizosphere of healthy and declining citrus in East Nusa Tenggara, Indonesia. Asian J. Agric. Biol. 2023(3), 2023011. https://doi.org/10.35495/ajab.2023.011 (2023).

  • Fichman, Y. & Mittler, R. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant. J. 102, 887–896 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Taratima, W., Kunpratum, N. & Maneerattanarungroj, P. Effect of salinity stress on physiological aspects of pumpkin (Cucurbita moschata Duchesne. ‘Laikaotok’) under hydroponic condition. Asian J. Agric. Biol. 2023(2), 202101050. https://doi.org/10.35495/ajab.2021.01.050 (2023).

  • Wang, Y. et al. Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions. Int. J. Mol. Sci. 20, 2994 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, J. S. et al. The dissection of R genes and locus Pc5. 1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers. BMC Genom. 22, 1–16 (2021).

    Article 

    Google Scholar
     

  • Wang, P., Wang, L., Guo, J., Yang, W. & Shen, H. Molecular mapping of a gene conferring resistance to Phytophthora Capsici Leonian race 2 in pepper line PI201234 (Capsicum annuum L). Mol. Breed. 36, 1–11 (2016).

    Article 

    Google Scholar
     

  • Rehrig, W. Z., Ashrafi, H., Hill, T., Prince, J. & Van Deynze, A. CaDMR1 cosegregates with QTL Pc5. 1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant. Genome. 7, plantgenome2014–plantgenome2003 (2014).

    Article 

    Google Scholar
     

  • Kim, N., Kang, W. H., Lee, J. & Yeom, S. I. Development of clustered resistance gene analogs-based markers of resistance to Phytophthora capsici in chili pepper. Biomed Res. Int. 1–12 (2018). (2018).

  • Basit, M. A. et al. Qualitative and quantitative phytochemical analysis, antioxidant activity and antimicrobial potential of selected herbs Piper betle and Persicaria odorata leaf extracts. Asian J. Agric. Biol. 2023(3), 2023038. https://doi.org/10.35495/ajab.2023.038 (2023).

  • Fatemi, R. et al. Screening barley genotypes in terms of some quantitative and qualitative characteristics under normal and water deficit stress conditions. Asian J. Agric. Biol. 2023(2), 2022071. https://doi.org/10.35495/ajab.2022.071 (2023).

  • Kumar, M., Kambham, M. R., Reddy, D. C. L., Sriram, S. & Singh, T. H. Identification of molecular marker linked to resistance gene loci against Indian isolate of Phytophthora Capsici L. causing root rot in Chilli (Capsicum annuum L). Australas Plant. Pathol. 51, 211–220 (2022).

    Article 

    Google Scholar
     

  • Arpaci, B. B. & Karataş, K. Comparison of Chili pepper breeding populations for agronomic traits and polygenic resistance to Phytophthora blight. Hortic. Bras. 38, 12–20 (2020).

    Article 

    Google Scholar
     

  • Thabuis, A. et al. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor. Appl. Genet. 109, 342–351 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Swarup, S. et al. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 61, 839–852 (2021).

    Article 

    Google Scholar
     

  • Alsaleh, A. et al. Marker-assisted selection and validation of DNA markers associated with cadmium content in durum wheat germplasm. Crop Pasture Sci. 73 (8) (2022).

  • Bukhari, T., Rana, R. M., Hassan, M. U., Naz, F. & Sajjad, M. Genetic diversity and marker trait association for phytophthora resistance in Chilli. Mol. Biol. Rep. 49, 5717–5728 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Moreira-Morrillo, A. A., Monteros-Altamirano, Á., Reis, A. & Garcés-Fiallos, F. R. Phytophthora capsici on Capsicum Plants: A Destructive Pathogen in Chili and Pepper Crops. (2022).

  • Iribarren, M. J., Steciow, M., González, B. & Nardelli, M. Prevalence and aetiology of Phytophthora fruit and stem rot of solanaceous and cucurbitaceous crops in the Pampas region of Argentina. J. Plant. Pathol. 101, 481–489 (2019).

    Article 

    Google Scholar
     

  • Shaw, R. K. et al. Establishing a high throughput screening method for large scale phenotyping of castor genotypes for resistance to Fusarium wilt disease. Phytoparasitica. 44, 539–548 (2016).

    Article 

    Google Scholar
     

  • Mansour, E. et al. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants. 9, 1324 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman, S. et al. (ed, U.) Influence of Tryptophan on the growth, yield and quality of Chilli with and without fertilizer. Pure Appl. Biology 10 4 1287–1302 (2021).

    Article 

    Google Scholar
     

  • Sanogo, S. & Ji, P. Integrated management of Phytophthora capsici on solanaceous and cucurbitaceous crops: current status, gaps in knowledge and research needs. Can. J. Plant. Pathol. 34, 479–492 (2012).

    Article 

    Google Scholar
     

  • Aktar-Uz-Zaman, M. et al. Selection of Lentil (Lens Culinaris (Medik.)) Genotypes Suitable for High-Temperature Conditions Based on Stress Tolerance Indices and Principal Component Analysis. Life 12, 1719 (2022).

  • Kumar, R., Mina, U., Gogoi, R., Bhatia, A. & Harit, R. C. Effect of elevated temperature and carbon dioxide levels on maydis leaf blight disease tolerance attributes in maize. Agric. Ecosyst. Environ. 231, 98–104 (2016).

    Article 

    Google Scholar
     

  • Kalve, S. & Gali, K. K. Tar’an, B. Genome-wide association analysis of stress tolerance indices in an interspecific population of chickpea. Front. Plant. Sci. 13, 933277 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmadi, J., Pour-Aboughadareh, A., Fabriki-Ourang, S., Mehrabi, A. A. & Siddique, K. H. M. Screening wheat germplasm for seedling root architectural traits under contrasting water regimes: potential sources of variability for drought adaptation. Arch. Agron. Soil. Sci. 64, 1351–1365 (2018).

    Article 

    Google Scholar
     

  • Mudi, N., Mahapatra, S. & Das, S. Assessment of Helminthosporium blight resistance in barley using disease stress tolerance index. Indian Phytopathol. 69, 24–31 (2016).


    Google Scholar
     

  • Sharf, W., Javaid, A., Shoaib, A. & Khan, I. H. Induction of resistance in Chili against Sclerotium rolfsii by plant-growth-promoting rhizobacteria and Anagallis arvensis. Egypt. J. Biol. Pest Control. 31, 1–11 (2021).

    Article 

    Google Scholar
     

  • Jo, S. J. et al. Resistance of Chili pepper cultivars to isolates of Phytophthora capsici. Hortic. Sci. Technol. 32, 66–76 (2014).


    Google Scholar
     

  • Mubushar, M. et al. Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat lines irrigated with saline water under Field conditions. Agronomy. 12, 3084 (2022).

    Article 

    Google Scholar
     

  • Singh, P., Jain, P. K. & Tiwari, A. Principal component analysis approach for yield attributing traits in Chilli (Capsicum annum L.) genotypes. Chem. Sci. Rev. Lett. 9, 87–91 (2020).


    Google Scholar
     

  • Kaiser, H. F. An index of factorial simplicity. Psychometrika. 39, 31–36 (1974).

    Article 

    Google Scholar
     

  • Akand, M. et al. Parent selection for Intercrossing in Chili (Capsicum annuum L.) through Multivariate Genetic Divergence Analysis. Mol. Plant. Breed. 7, (2016).

  • Karipçin, Z., Seyidoğlu, G. & Mikail, N. Characterization of phytophthora capsici leonian resistance in some pepper genotypes by principal component analysis. (2018).

  • Memon, A., Ahmad, R., Depar, M. S., Pathan, A. K. & Ibrar, D. Estimation of genetic divergence in Chilli pepper (Capsicum annuum L.) genotypes for morphological and fruit traits under hot climate of Umerkot, Sindh. Pakistan J. Agric. Agric. Eng. Vet. Sci. 37, 21–28 (2021).


    Google Scholar
     

  • Antolín-Llovera, M., Ried, M. K., Binder, A. & Parniske, M. Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol. 50, 451–473 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y., Li, X., Fan, B., Zhu, C. & Chen, Z. Regulation and function of defense-related callose deposition in plants. Int. J. Mol. Sci. 22, 2393 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barchenger, D. W., Lamour, K. H. & Bosland, P. W. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front. Plant. Sci. 9, 628 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J., Lee, W. P., Kang, B. C. & Yoon, J. B. Inheritance of resistance to Phytophthora root rot in Chili pepper depending on inoculum density and parental genotypes. Korean J. Breed. Sci. 44, 503–509 (2012).

    Article 

    Google Scholar
     

  • Bongiorno, G. et al. Development and application of a cleaved amplified polymorphic sequence marker (Phyto) linked to the Pc5. 1 locus conferring resistance to Phytophthora Capsici in Pepper (Capsicum annuum L). Plants. 12, 2757 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Development and validation of KASP markers for resistance to Phytophthora capsici in Capsicum annuum L. Mol. Breed. 43, 20 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreira, A. F. P. et al. Genetic diversity, population structure and genetic parameters of fruit traits in Capsicum chinense. Sci. Hortic. (Amsterdam). 236, 1–9 (2018).

    Article 

    Google Scholar
     

  • Acharya, B., Dutta, S., Dutta, S. & Chattopadhyay, A. Breeding tomato for simultaneous improvement of processing quality, fruit yield, and dual disease tolerance. Int. J. Veg. Sci. 24, 407–423 (2018).

    Article 

    Google Scholar
     

  • Pawar, P., Suresh, C. K., Hittalmani, S., BC, K. M. & Biradar, H. DNA marker-assisted analysis of recombinant inbred lines using trait-specific markers and candidate genes in Rice (Oryza sativa L). Genes Genomes Genomics. 6, 48–51 (2012).


    Google Scholar
     

  • Zeng, L., Meredith, W. R., Gutiérrez, O. A. & Boykin, D. L. Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor. Appl. Genet. 119, 93–103 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Gawłowska, M. et al. Validation of molecular markers significant for flowering time, plant lodging, stem geometry properties, and raffinose family oligosaccharides in pea (Pisum sativum l). Agriculture. 12, 1125 (2022).

    Article 

    Google Scholar
     

  • Diapari, M., Sindhu, A., Warkentin, T. D. & Bett, K. Tar’an, B. Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L). Mol. Breed. 35, 1–14 (2015).

    Article 

    Google Scholar
     

  • Quesada-Ocampo, L. M. et al. Phytophthora capsici: recent progress on Fundamental Biology and Disease Management 100 years after its description. Annu. Rev. Phytopathol. 61, (2023).

  • Siddique, M. I. et al. Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-by-sequencing-based QTL mapping and genome-wide association study. Sci. Rep. 9, 9962 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maiti, R., Rajkumar, D., Jagan, M., Pramanik, K. & Vidyasagar, P. Effect of seed priming on seedling vigour and yield of tomato and Chilli. Int. J. Bio-resource Stress Manag. 4, 119–125 (2013).


    Google Scholar
     

  • Bosland, P. W. & Lindsey, D. L. A Seedling Screen for Phytophthora Root Rot of Pepper, Capsicum Annuum. (1991).

  • Aklilu, S., Ayana, G., Abebie, B. & Abdissa, T. Screening for resistance sources in local and exotic hot pepper genotypes to Fusarium wilt (Fusarium oxysporium) and associated quality traits in Ethiopia. Adv. Crop Sci. Technol. 6, 367–376 (2018).

    Article 

    Google Scholar
     

  • Fernandez, G. C. J. Effective selection criteria for assessing plant stress tolerance. in Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13–16, Shanhua, Taiwan, 1992 257–270 (1992).

  • Widmer, T. L., Graham, J. H. & Mitchell, D. J. Histological comparison of fibrous root infection of disease-tolerant and susceptible citrus hosts by Phytophthora nicotianae and P. Palmivora. Phytopathology. 88, 389–395 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Nijabat, A. et al. Cell membrane stability and relative cell injury in response to heat stress during early and late seedling stages of diverse carrot (Daucus carota L.) germplasm. Hortscience. 55, 1446–1452 (2020).

    Article 

    Google Scholar
     

  • Hameed, M., Keitel, C., Ahmad, N., Mahmood, T. & Trethowan, R. Screening of tomatoes germplasm for heat stress tolerance under controlled conditions. Procedia Environ. Sci. 29, 173–174 (2015).

    Article 

    Google Scholar
     

  • Gracia-Medrano, R. M. E. & de Lourdes Miranda-Ham, M. Analysis of elicitor-induced cell viability changes in Lycopersicon esculentum Mill. suspension culture by different methods. Vitr. Cell. Dev. Biol. 39, 236–239 (2003).

  • Daudi, A. & O’Brien, J. A. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-protocol. 2, e263–e263 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities. Biol. Fertil. Soils. 55, 149–169 (2019).

    Article 

    Google Scholar
     

  • Core, R. T. R: A language and environment for statistical computing (2019). https://cir.nii.ac.jp/crid/1370579814635375110

  • d Steel, R. G. & Torrie, J. H. Principles and Procedures of Statistics: A Biometrical Approach (McGraw-Hill, 1986).

  • Federer, W. T. & Raghavarao, D. On augmented designs. Biometrics 29–35 (1975).

  • Doyle, J. J. Isolation of plant DNA from fresh tissue. Focus (Madison). 12, 13–15 (1990).


    Google Scholar
     

  • McGregor, C. et al. Genotypic and phenotypic variation among pepper accessions resistant to Phytophthora capsici. HortScience. 46, 1235–1240 (2011).

    Article 

    Google Scholar
     

  • Gösset, W. S. The probable error of a mean. Biometrika. 6, 1–25 (1908).

    Article 

    Google Scholar
     

  • Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics. 28, 2537e2539 (2012).

    Article 

    Google Scholar