
Granke, L. L., Quesada-Ocampo, L., Lamour, K. & Hausbeck, M. K. advances in research on Phytophthora capsici on vegetable crops in the United States. Plant. Dis. 96, 1588–1600 (2012).
Fao.org/faostat/en/#data/QCL. Crops and livestock products. Food and Agriculture Organization of the United Nations, Rome, Italy. (2021).
Economic survey of Pakistan. Agriculture. Ministry of Finance, Government of Pakistan. Islamabad Pakistan 19–30 (2022–2023).
Lamour, K. H., Stam, R., Jupe, J. & Huitema, E. The oomycete broad-host‐range pathogen Phytophthora Capsici. Mol. Plant. Pathol. 13, 329–337 (2012).
Islam, S. Z., Babadoost, M., Lambert, K. N., Ndeme, A. & Fouly, H. M. Characterization of Phytophthora Capsici isolates from processing pumpkin in Illinois. Plant. Dis. 89, 191–197 (2005).
Rai, G. S. & Guest, D. I. Drainage, animal manures and fungicides reduce Phytophthora wilt (caused by Phytophthora Capsici) of Chilli (Capsicum annuum L.) in Bhutan. Australas Plant. Pathol. 50, 169–177 (2021).
Waszczak, C., Carmody, M. & Kangasjärvi, J. Reactive oxygen species in plant signaling. Annu. Rev. Plant. Biol. 69, 209–236 (2018).
Ishaq, L. et al. Abundance of arbuscular mycorrhizal fungi in the rhizosphere of healthy and declining citrus in East Nusa Tenggara, Indonesia. Asian J. Agric. Biol. 2023(3), 2023011. https://doi.org/10.35495/ajab.2023.011 (2023).
Fichman, Y. & Mittler, R. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant. J. 102, 887–896 (2020).
Taratima, W., Kunpratum, N. & Maneerattanarungroj, P. Effect of salinity stress on physiological aspects of pumpkin (Cucurbita moschata Duchesne. ‘Laikaotok’) under hydroponic condition. Asian J. Agric. Biol. 2023(2), 202101050. https://doi.org/10.35495/ajab.2021.01.050 (2023).
Wang, Y. et al. Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions. Int. J. Mol. Sci. 20, 2994 (2019).
Du, J. S. et al. The dissection of R genes and locus Pc5. 1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers. BMC Genom. 22, 1–16 (2021).
Wang, P., Wang, L., Guo, J., Yang, W. & Shen, H. Molecular mapping of a gene conferring resistance to Phytophthora Capsici Leonian race 2 in pepper line PI201234 (Capsicum annuum L). Mol. Breed. 36, 1–11 (2016).
Rehrig, W. Z., Ashrafi, H., Hill, T., Prince, J. & Van Deynze, A. CaDMR1 cosegregates with QTL Pc5. 1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant. Genome. 7, plantgenome2014–plantgenome2003 (2014).
Kim, N., Kang, W. H., Lee, J. & Yeom, S. I. Development of clustered resistance gene analogs-based markers of resistance to Phytophthora capsici in chili pepper. Biomed Res. Int. 1–12 (2018). (2018).
Basit, M. A. et al. Qualitative and quantitative phytochemical analysis, antioxidant activity and antimicrobial potential of selected herbs Piper betle and Persicaria odorata leaf extracts. Asian J. Agric. Biol. 2023(3), 2023038. https://doi.org/10.35495/ajab.2023.038 (2023).
Fatemi, R. et al. Screening barley genotypes in terms of some quantitative and qualitative characteristics under normal and water deficit stress conditions. Asian J. Agric. Biol. 2023(2), 2022071. https://doi.org/10.35495/ajab.2022.071 (2023).
Kumar, M., Kambham, M. R., Reddy, D. C. L., Sriram, S. & Singh, T. H. Identification of molecular marker linked to resistance gene loci against Indian isolate of Phytophthora Capsici L. causing root rot in Chilli (Capsicum annuum L). Australas Plant. Pathol. 51, 211–220 (2022).
Arpaci, B. B. & Karataş, K. Comparison of Chili pepper breeding populations for agronomic traits and polygenic resistance to Phytophthora blight. Hortic. Bras. 38, 12–20 (2020).
Thabuis, A. et al. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor. Appl. Genet. 109, 342–351 (2004).
Swarup, S. et al. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 61, 839–852 (2021).
Alsaleh, A. et al. Marker-assisted selection and validation of DNA markers associated with cadmium content in durum wheat germplasm. Crop Pasture Sci. 73 (8) (2022).
Bukhari, T., Rana, R. M., Hassan, M. U., Naz, F. & Sajjad, M. Genetic diversity and marker trait association for phytophthora resistance in Chilli. Mol. Biol. Rep. 49, 5717–5728 (2022).
Moreira-Morrillo, A. A., Monteros-Altamirano, Á., Reis, A. & Garcés-Fiallos, F. R. Phytophthora capsici on Capsicum Plants: A Destructive Pathogen in Chili and Pepper Crops. (2022).
Iribarren, M. J., Steciow, M., González, B. & Nardelli, M. Prevalence and aetiology of Phytophthora fruit and stem rot of solanaceous and cucurbitaceous crops in the Pampas region of Argentina. J. Plant. Pathol. 101, 481–489 (2019).
Shaw, R. K. et al. Establishing a high throughput screening method for large scale phenotyping of castor genotypes for resistance to Fusarium wilt disease. Phytoparasitica. 44, 539–548 (2016).
Mansour, E. et al. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants. 9, 1324 (2020).
Rahman, S. et al. (ed, U.) Influence of Tryptophan on the growth, yield and quality of Chilli with and without fertilizer. Pure Appl. Biology 10 4 1287–1302 (2021).
Sanogo, S. & Ji, P. Integrated management of Phytophthora capsici on solanaceous and cucurbitaceous crops: current status, gaps in knowledge and research needs. Can. J. Plant. Pathol. 34, 479–492 (2012).
Aktar-Uz-Zaman, M. et al. Selection of Lentil (Lens Culinaris (Medik.)) Genotypes Suitable for High-Temperature Conditions Based on Stress Tolerance Indices and Principal Component Analysis. Life 12, 1719 (2022).
Kumar, R., Mina, U., Gogoi, R., Bhatia, A. & Harit, R. C. Effect of elevated temperature and carbon dioxide levels on maydis leaf blight disease tolerance attributes in maize. Agric. Ecosyst. Environ. 231, 98–104 (2016).
Kalve, S. & Gali, K. K. Tar’an, B. Genome-wide association analysis of stress tolerance indices in an interspecific population of chickpea. Front. Plant. Sci. 13, 933277 (2022).
Ahmadi, J., Pour-Aboughadareh, A., Fabriki-Ourang, S., Mehrabi, A. A. & Siddique, K. H. M. Screening wheat germplasm for seedling root architectural traits under contrasting water regimes: potential sources of variability for drought adaptation. Arch. Agron. Soil. Sci. 64, 1351–1365 (2018).
Mudi, N., Mahapatra, S. & Das, S. Assessment of Helminthosporium blight resistance in barley using disease stress tolerance index. Indian Phytopathol. 69, 24–31 (2016).
Sharf, W., Javaid, A., Shoaib, A. & Khan, I. H. Induction of resistance in Chili against Sclerotium rolfsii by plant-growth-promoting rhizobacteria and Anagallis arvensis. Egypt. J. Biol. Pest Control. 31, 1–11 (2021).
Jo, S. J. et al. Resistance of Chili pepper cultivars to isolates of Phytophthora capsici. Hortic. Sci. Technol. 32, 66–76 (2014).
Mubushar, M. et al. Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat lines irrigated with saline water under Field conditions. Agronomy. 12, 3084 (2022).
Singh, P., Jain, P. K. & Tiwari, A. Principal component analysis approach for yield attributing traits in Chilli (Capsicum annum L.) genotypes. Chem. Sci. Rev. Lett. 9, 87–91 (2020).
Kaiser, H. F. An index of factorial simplicity. Psychometrika. 39, 31–36 (1974).
Akand, M. et al. Parent selection for Intercrossing in Chili (Capsicum annuum L.) through Multivariate Genetic Divergence Analysis. Mol. Plant. Breed. 7, (2016).
Karipçin, Z., Seyidoğlu, G. & Mikail, N. Characterization of phytophthora capsici leonian resistance in some pepper genotypes by principal component analysis. (2018).
Memon, A., Ahmad, R., Depar, M. S., Pathan, A. K. & Ibrar, D. Estimation of genetic divergence in Chilli pepper (Capsicum annuum L.) genotypes for morphological and fruit traits under hot climate of Umerkot, Sindh. Pakistan J. Agric. Agric. Eng. Vet. Sci. 37, 21–28 (2021).
Antolín-Llovera, M., Ried, M. K., Binder, A. & Parniske, M. Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol. 50, 451–473 (2012).
Wang, Y., Li, X., Fan, B., Zhu, C. & Chen, Z. Regulation and function of defense-related callose deposition in plants. Int. J. Mol. Sci. 22, 2393 (2021).
Barchenger, D. W., Lamour, K. H. & Bosland, P. W. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front. Plant. Sci. 9, 628 (2018).
Lee, J., Lee, W. P., Kang, B. C. & Yoon, J. B. Inheritance of resistance to Phytophthora root rot in Chili pepper depending on inoculum density and parental genotypes. Korean J. Breed. Sci. 44, 503–509 (2012).
Bongiorno, G. et al. Development and application of a cleaved amplified polymorphic sequence marker (Phyto) linked to the Pc5. 1 locus conferring resistance to Phytophthora Capsici in Pepper (Capsicum annuum L). Plants. 12, 2757 (2023).
Zhang, Z. et al. Development and validation of KASP markers for resistance to Phytophthora capsici in Capsicum annuum L. Mol. Breed. 43, 20 (2023).
Moreira, A. F. P. et al. Genetic diversity, population structure and genetic parameters of fruit traits in Capsicum chinense. Sci. Hortic. (Amsterdam). 236, 1–9 (2018).
Acharya, B., Dutta, S., Dutta, S. & Chattopadhyay, A. Breeding tomato for simultaneous improvement of processing quality, fruit yield, and dual disease tolerance. Int. J. Veg. Sci. 24, 407–423 (2018).
Pawar, P., Suresh, C. K., Hittalmani, S., BC, K. M. & Biradar, H. DNA marker-assisted analysis of recombinant inbred lines using trait-specific markers and candidate genes in Rice (Oryza sativa L). Genes Genomes Genomics. 6, 48–51 (2012).
Zeng, L., Meredith, W. R., Gutiérrez, O. A. & Boykin, D. L. Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor. Appl. Genet. 119, 93–103 (2009).
Gawłowska, M. et al. Validation of molecular markers significant for flowering time, plant lodging, stem geometry properties, and raffinose family oligosaccharides in pea (Pisum sativum l). Agriculture. 12, 1125 (2022).
Diapari, M., Sindhu, A., Warkentin, T. D. & Bett, K. Tar’an, B. Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L). Mol. Breed. 35, 1–14 (2015).
Quesada-Ocampo, L. M. et al. Phytophthora capsici: recent progress on Fundamental Biology and Disease Management 100 years after its description. Annu. Rev. Phytopathol. 61, (2023).
Siddique, M. I. et al. Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-by-sequencing-based QTL mapping and genome-wide association study. Sci. Rep. 9, 9962 (2019).
Maiti, R., Rajkumar, D., Jagan, M., Pramanik, K. & Vidyasagar, P. Effect of seed priming on seedling vigour and yield of tomato and Chilli. Int. J. Bio-resource Stress Manag. 4, 119–125 (2013).
Bosland, P. W. & Lindsey, D. L. A Seedling Screen for Phytophthora Root Rot of Pepper, Capsicum Annuum. (1991).
Aklilu, S., Ayana, G., Abebie, B. & Abdissa, T. Screening for resistance sources in local and exotic hot pepper genotypes to Fusarium wilt (Fusarium oxysporium) and associated quality traits in Ethiopia. Adv. Crop Sci. Technol. 6, 367–376 (2018).
Fernandez, G. C. J. Effective selection criteria for assessing plant stress tolerance. in Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13–16, Shanhua, Taiwan, 1992 257–270 (1992).
Widmer, T. L., Graham, J. H. & Mitchell, D. J. Histological comparison of fibrous root infection of disease-tolerant and susceptible citrus hosts by Phytophthora nicotianae and P. Palmivora. Phytopathology. 88, 389–395 (1998).
Nijabat, A. et al. Cell membrane stability and relative cell injury in response to heat stress during early and late seedling stages of diverse carrot (Daucus carota L.) germplasm. Hortscience. 55, 1446–1452 (2020).
Hameed, M., Keitel, C., Ahmad, N., Mahmood, T. & Trethowan, R. Screening of tomatoes germplasm for heat stress tolerance under controlled conditions. Procedia Environ. Sci. 29, 173–174 (2015).
Gracia-Medrano, R. M. E. & de Lourdes Miranda-Ham, M. Analysis of elicitor-induced cell viability changes in Lycopersicon esculentum Mill. suspension culture by different methods. Vitr. Cell. Dev. Biol. 39, 236–239 (2003).
Daudi, A. & O’Brien, J. A. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-protocol. 2, e263–e263 (2012).
Li, Y. et al. Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities. Biol. Fertil. Soils. 55, 149–169 (2019).
Core, R. T. R: A language and environment for statistical computing (2019). https://cir.nii.ac.jp/crid/1370579814635375110
d Steel, R. G. & Torrie, J. H. Principles and Procedures of Statistics: A Biometrical Approach (McGraw-Hill, 1986).
Federer, W. T. & Raghavarao, D. On augmented designs. Biometrics 29–35 (1975).
Doyle, J. J. Isolation of plant DNA from fresh tissue. Focus (Madison). 12, 13–15 (1990).
McGregor, C. et al. Genotypic and phenotypic variation among pepper accessions resistant to Phytophthora capsici. HortScience. 46, 1235–1240 (2011).
Gösset, W. S. The probable error of a mean. Biometrika. 6, 1–25 (1908).
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics. 28, 2537e2539 (2012).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-79718-z