Search
Close this search box.

Using Spirulina platensis as a natural biocoagulant for polystyrene removal from aqueous medium: performance, optimization, and modeling – Scientific Reports

  • Shen, M. et al. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 254, 120138 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mai, L., Bao, L.-J., Shi, L., Liu, L.-Y. & Zeng, E. Y. Polycyclic aromatic hydrocarbons associated with microplastics in surface waters of Bohai and Huanghai Seas, China. Environ. Pollut. 241, 834–840 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lusher, A., Hollman, P. & Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety (FAO, 2017).


    Google Scholar
     

  • Barari, F. & Bonyadi, Z. Evaluation of the leaching of microplastics from discarded medical masks in aquatic environments: A case study of Mashhad city. Appl. Water Sci. 13(12), 229 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karbalaei, S., Hanachi, P., Walker, T. R. & Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 25, 36046–36063 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Duis, K. & Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 28(1), 1–25 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, S., Sharma, V. & Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 8, 634934 (2021).

    Article 

    Google Scholar
     

  • Bonyadi, Z., Maghsodian, Z., Zahmatkesh, M., Nasiriara, J. & Ramavandi, B. Investigation of microplastic pollution in Torghabeh River sediments, northeast of Iran. J. Contam. Hydrol. 250, 104064 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enfrin, M. et al. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J. Hazard. Mater. 384, 121393 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environ. Sci. Pollut. Res. 26, 23027–23036 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Effects of microplastics on the innate immunity and intestinal microflora of juvenile Eriocheir Sinensis. Sci. Total Environ. 685, 836–846 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahmatkesh Anbarani, M., Najafpoor, A., Barikbin, B. & Bonyadi, Z. Adsorption of tetracycline on polyvinyl chloride microplastics in aqueous environments. Sci. Rep. 13(1), 17989 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lithner, D., Nordensvan, I. & Dave, G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna. Environ. Sci. Pollut. Res. 19, 1763–1772 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kedzierski, M. et al. Threat of plastic aging in marine environment. Adsorp. Desorp. Micropollut. Mar. Pollut. Bull. 127, 684–694 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B. 364(1526), 1985–1998 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, G. et al. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism. Sci. Total Environ. 752, 141837 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsh, K. & Bugusu, B. Food packaging—roles, materials, and environmental issues. J. Food Sci. 72(3), R39–R55 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esmaeili Nasrabadi, A., Zahmatkesh Anbarani, M. & Bonyadi, Z. Investigating the efficiency of oak powder as a new natural coagulant for eliminating polystyrene microplastics from aqueous solutions. Sci. Rep. 13(1), 20402 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enyoh, C. E. et al. An overview of physical, chemical and biological methods for removal of microplastics. In Microplastics Pollution in Aquatic Media: Occurrence, Detection, and Removal (eds Sillanpää, M. et al.) 273–289 (Singapore, 2022).

    Chapter 

    Google Scholar
     

  • Padervand, M., Lichtfouse, E., Robert, D. & Wang, C. Removal of microplastics from the environment. A review. Environ. Chem. Lett. 18(3), 807–828 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cunha, C. et al. Microalgal-based biopolymer for nano- and microplastic removal: A possible biosolution for wastewater treatment. Environ. Pollut. 263, 114385 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang, W. L. & Mohammad, A. W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 262, 121267 (2020).

    Article 

    Google Scholar
     

  • Freitas, T. et al. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Ind. Crops Prod. 76, 538–544 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mazloomi, S. et al. Removal of methylene blue by Saccharomyces cerevisiae: Process modeling and optimization. Desal. Water Treat. 236, 318–325 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Esmaili, Z. et al. Biosorption of metronidazole using Spirulina platensis microalgae: Process modeling, kinetic, thermodynamic, and isotherm studies. Appl. Water Sci. 13(2), 63 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sadeghi, A. et al. The effect of diazinon on the removal of carmoisine by Saccharomyces cerevisiae. Desalin. Water Treat. 137, 273–278 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nasrabadi, A. E., Ramavandi, B. & Bonyadi, Z. Recent progress in biodegradation of microplastics by Aspergillus sp. in aquatic environments. Colloid Interface Sci. Commun. 57, 100754 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zahmatkesh Anbarani, M., Esmaeili Nasrabadi, A. & Bonyadi, Z. Use of Saccharomyces cerevisiae as a new technique to remove polystyrene from aqueous medium: Modeling, optimization, and performance. Appl. Water Sci. 13(8), 166 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rath, B. Microalgal bioremediation: Current practices and perspectives. J. Biochem. Technol. 3(3), 299–304 (2012).


    Google Scholar
     

  • Grosshagauer, S., Kraemer, K. & Somoza, V. The true value of Spirulina. J. Agric. Food Chem. 68(14), 4109–4115 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manzi, H. P., Abou-Shanab, R. A., Jeon, B.-H., Wang, J. & Salama, E.-S. Algae: A frontline photosynthetic organism in the microplastic catastrophe. Trends Plant Sci. 20, 20 (2022).


    Google Scholar
     

  • Nasrabadi, A. E., Eydi, M. & Bonyadi, Z. Utilizing Chlorella vulgaris algae as an eco-friendly coagulant for efficient removal of polyethylene microplastics from aquatic environments. Heliyon 20, 20 (2023).


    Google Scholar
     

  • Pan, Y. et al. Removing microplastics from aquatic environments: A critical review. Environ. Sci. Ecotechnol. 13, 100222 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Y., Gao, B., Yue, Q. & Li, R. Application of enteromorpha polysaccharides as coagulant aid in the simultaneous removal of CuO nanoparticles and Cu2+: Effect of humic acid concentration. Chemosphere 204, 492–500 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasoudari, E., Ameri, M., Shams, M., Ghavami, V. & Bonyadi, Z. The biosorption of Alizarin Red S by Spirulina platensis; process modeling, optimization, kinetic and isotherm studies. Int. J. Environ. Anal. Chem. 20, 1–15 (2021).


    Google Scholar
     

  • Choudhary, M., Ray, M. B. & Neogi, S. Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Sep. Purif. Technol. 209, 714–724 (2019).

    Article 
    CAS 

    Google Scholar
     

  • de Diego-Díaz, B., Duran, A., Álvarez-García, M. R. & Fernández-Rodríguez, J. New trends in physicochemical characterization of solid lignocellulosic waste in anaerobic digestion. Fuel 245, 240–246 (2019).

    Article 

    Google Scholar
     

  • Amor, I. B. et al. Biosynthesis of MgO and ZnO nanoparticles using chitosan extracted from Pimelia Payraudi Latreille for antibacterial applications. World J. Microbiol. Biotechnol. 39(1), 19 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fang, J., Xuan, Y. & Li, Q. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci. China Technol. Sci. 53, 3088–3093 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, B. The infrared spectra of polymers III: Hydrocarbon polymers. Spectroscopy 36(11), 22–25 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, H. Structure, Dynamics, and Therapeutic Potential of ATP Synthase (University of Toronto, 2022).


    Google Scholar
     

  • Kurniawan, T. A. et al. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. Chemosphere 20, 138367 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Adegoke, K. A. et al. Microplastics toxicity, detection, and removal from water/wastewater. Mar. Pollut. Bull. 187, 114546 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, H. S., Fraser, A. & Knights, A. M. Spatial arrangement of biogenic reefs alters boundary layer characteristics to increase risk of microplastic bioaccumulation. Environ. Res. Lett. 15(6), 064024 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Neolaka, Y. A. et al. Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr (VI) from wastewater. J. Mater. Res. Technol. 18, 2896–2909 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ali, I. et al. Interaction of microplastics and nanoplastics with natural organic matter (NOM) and the impact of NOM on the sorption behavior of anthropogenic contaminants—a critical review. J. Clean. Prod. 20, 134314 (2022).

    Article 

    Google Scholar
     

  • Wan, Y., Liu, X., Liu, P., Zhao, L. & Zou, W. Optimization of adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: Kinetic, equilibrium and adsorption mechanism studies. Sci. Total Environ. 639, 428–437 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fard, M. B., Hamidi, D., Yetilmezsoy, K., Alavi, J. & Hosseinpour, F. Utilization of Alyssum mucilage as a natural coagulant in oily-saline wastewater treatment. J. Water Process Eng. 40, 101763 (2021).

    Article 

    Google Scholar
     

  • Ren, B., Weitzel, K. A., Duan, X., Nadagouda, M. N. & Dionysiou, D. D. A comprehensive review on algae removal and control by coagulation-based processes: Mechanism, material, and application. Sep. Purif. Technol. 293, 121106 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Y.-R. & Wang, H.-Y. Highly effective removal of microplastics by microalgae Scenedesmus abundans. Chem. Eng. J. 435, 135079 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y. et al. Heterogeneous aggregation between microplastics and microalgae: May provide new insights for microplastics removal. Aquat. Toxicol. 261, 106638 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, B., Lee, S.-W., Jung, E.-M. & Lee, E.-H. Biosorption of sub-micron-sized polystyrene microplastics using bacterial biofilms. J. Hazar. Mater. 458, 131858 (2023).

    Article 
    CAS 

    Google Scholar