Unveiling microbial diversity: harnessing long-read sequencing technology – Nature Methods

  • Edwards, R. A. et al. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7, 57 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamburini, F. B. et al. Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa. Nat. Commun. 13, 926 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Almsick, V., Schuler, F., Mellmann, A. & Schwierzeck, V. The use of long-read sequencing technologies in infection control: horizontal transfer of a blaCTX-M-27 containing lncFII plasmid in a patient screening sample. Microorganisms 10, 491 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, Y., Mead, E. A. & Fang, G. Navigating the pitfalls of mapping DNA and RNA modifications. Nat. Rev. Genet. 10.1038/s41576-022-00559-5 (2023).

  • De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gehrig, J. L. et al. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb. Genom. 8, 000794 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiguchi, Y., Nishijima, S., Kumar, N., Hattori, M. & Suda, W. Long-read metagenomics of multiple displacement amplified DNA of low-biomass human gut phageomes by SACRA pre-processing chimeric reads. DNA Res. 28, dsab019 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson, N. D. et al. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief. Bioinform. 20, 1140–1150 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, Y., Liu, X., Simeneh, Z. M., Yang, M. & Li, R. Benchmarking of Nanopore R10.4 and R9.4.1 flow cells in single-cell whole-genome amplification and whole-genome shotgun sequencing. Comput. Struct. Biotechnol. J. 21, 2352–2364 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the international space station. Sci. Rep. 7, 18022 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H. et al. A rapid bacterial pathogen and antimicrobial resistance diagnosis workflow using Oxford nanopore adaptive sequencing method. Brief. Bioinform. 23, bbac453 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Rapid detection of bacterial pathogens and antimicrobial resistance genes in clinical urine samples with urinary tract infection by metagenomic nanopore sequencing. Front. Microbiol. 13, 858777 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isidro, J. et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 28, 1569–1572 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaulke, C. A. et al. Evaluation of the effects of library preparation procedure and sample characteristics on the accuracy of metagenomic profiles. mSystems 6, e0044021 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Portik, D. M., Brown, C. T. & Pierce-Ward, N. T. Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. BMC Bioinformatics 23, 541 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Toward efficient and high-fidelity metagenomic data from sub-nanogram DNA: evaluation of library preparation and decontamination methods. BMC Biol. 20, 225 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martí, J. M. Recentrifuge: Robust comparative analysis and contamination removal for metagenomics. PLoS Comput. Biol. 15, e1006967 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warris, S. et al. Correcting palindromes in long reads after whole-genome amplification. BMC Genomics 19, 798 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCall, C. et al. Targeted metagenomic sequencing for detection of vertebrate viruses in wastewater for public health surveillance. ACS EST Water https://doi.org/10.1021/acsestwater.3c00183 (2023).

    Article 

    Google Scholar
     

  • Ludwig, K. U. et al. LAMP-Seq enables sensitive, multiplexed COVID-19 diagnostics using molecular barcoding. Nat. Biotechnol. 39, 1556–1562 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loose, M., Malla, S. & Stout, M. Real-time selective sequencing using nanopore technology. Nat. Methods 13, 751–754 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samarakoon, H., Ferguson, J. M., Gamaarachchi, H. & Deveson, I. W. Accelerated nanopore basecalling with SLOW5 data format. Bioinformatics 39, btad352 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, F. et al. Critical Assessment of Metagenome Interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–D26 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curry, K. D. et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat. Methods 19, 845–853 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez-Pérez, H., Ciuffreda, L. & Flores, C. NanoCLUST: a species-level analysis of 16S rRNA nanopore sequencing data. Bioinformatics 37, 1600–1601 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zaragoza-Solas, A., Haro-Moreno, J. M., Rodriguez-Valera, F. & López-Pérez, M. Long-read metagenomics improves the recovery of viral diversity from complex natural marine samples. mSystems 7, e0019222 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, I.-M. A. et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45, D507–D516 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keegan, K. P., Glass, E. M. & Meyer, F. MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol. Biol. 1399, 207–233 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dilthey, A. T., Jain, C., Koren, S. & Phillippy, A. M. Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps. Nat. Commun. 10, 3066 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huson, D. H. et al. MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol. Direct 13, 6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M., Steinegger, M., Breitwieser, F., Söding, J. & Levy Karin, E. Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics 37, 3029–3031 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bui, V.-K. & Wei, C. CDKAM: a taxonomic classification tool using discriminative k-mers and approximate matching strategies. BMC Bioinformatics 21, 468 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, J., Huang, S. & Chorlton, S. D. BugSeq: a highly accurate cloud platform for long-read metagenomic analyses. BMC Bioinformatics 22, 160 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marić, J., Križanović, K., Riondet, S., Nagarajan, N. & Šikić, M. Comparative analysis of metagenomic classifiers for long-read sequencing datasets. BMC Bioinformatics 25, 15 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, M. & Warr, A. Errors in long-read assemblies can critically affect protein prediction. Nat. Biotechnol. 37, 124–126 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balaji, A. et al. SeqScreen-Nano: a computational platform for rapid, in-field characterization of previously unseen pathogens. Preprint at bioRxiv https://doi.org/10.1101/2023.02.10.528096 (2023).

  • Breitwieser, F. P., Pertea, M., Zimin, A. V. & Salzberg, S. L. Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Res. 29, 954–960 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazantseva, E., Donmez, A., Pop, M. & Kolmogorov, M. stRainy: assembly-based metagenomic strain phasing using long reads. Preprint at bioRxiv https://doi.org/10.1101/2023.01.31.526521 (2023).

  • Maguire, F. et al. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic Islands. Microb. Genom. 6, mgen000436 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bickhart, D. M. et al. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nat. Biotechnol. 40, 711–719 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, C., Hill, C. M., Wu, S., Ruan, J. & Ma, Z. S. DBG2OLC: Efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haro-Moreno, J. M., López-Pérez, M. & Rodriguez-Valera, F. Enhanced recovery of microbial genes and genomes from a marine water column using long-read metagenomics. Front. Microbiol. 12, 708782 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, X., Kang, X. & Schönhuth, A. VeChat: correcting errors in long reads using variation graphs. Nat. Commun. 13, 6657 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z., Yang, C., Veldsman, W. P., Fang, X. & Zhang, L. Benchmarking genome assembly methods on metagenomic sequencing data. Brief. Bioinform. 24, (2023).

  • Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, X., Cheng, H., Portik, D. & Li, H. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat. Methods 19, 671–674 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majidian, S., Agustinho, D. P., Chin, C.-S., Sedlazeck, F. J. & Mahmoud, M. Genomic variant benchmark: if you cannot measure it, you cannot improve it. Genome Biol. 24, 221 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghurye, J., Treangen, T., Fedarko, M., Hervey, W. J. 4th & Pop, M. MetaCarvel: linking assembly graph motifs to biological variants. Genome Biol. 20, 174 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, X., Kang, X. & Schönhuth, A. Enhancing long-read-based strain-aware metagenome assembly. Front. Genet. 13, 868280 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 266 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vicedomini, R., Quince, C., Darling, A. E. & Chikhi, R. Strainberry: automated strain separation in low-complexity metagenomes using long reads. Nat. Commun. 12, 4485 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C. et al. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput. Struct. Biotechnol. J. 19, 6301–6314 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattock, J. & Watson, M. A comparison of single-coverage and multi-coverage metagenomic binning reveals extensive hidden contamination. Nat. Methods 20, 1170–1173 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wickramarachchi, A., Mallawaarachchi, V., Rajan, V. & Lin, Y. MetaBCC-LR: metagenomics binning by coverage and composition for long reads. Bioinformatics 36, i3–i11 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickramarachchi, A. & Lin, Y. Binning long reads in metagenomics datasets using composition and coverage information. Algorithms Mol. Biol. 17, 14 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamurias, A., Sereika, M., Albertsen, M., Hose, K. & Nielsen, T. D. Metagenomic binning with assembly graph embeddings. Bioinformatics 38, 4481–4487 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muralidharan, H. S., Shah, N., Meisel, J. S. & Pop, M. Binnacle: using scaffolds to improve the contiguity and quality of metagenomic bins. Front. Microbiol. 12, 638561 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilbanks, E. G. et al. Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity. ISME J. 16, 1921–1931 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthelier, J. et al. Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene-transposon transcripts in Arabidopsis thaliana. Nat. Commun. 14, 3248 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. Y. et al. Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Sci. Rep. 11, 20740 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. -T., Liu, P. -Y. & Shih, P. -W. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biol. 22, 95 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornet, L. & Baurain, D. Contamination detection in genomic data: more is not enough. Genome Biol. 23, 60 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y., Zhang, Y., Wang, A. Y., Gao, M. & Chong, Z. Accurate long-read de novo assembly evaluation with Inspector. Genome Biol. 22, 312 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mineeva, O., Rojas-Carulla, M., Ley, R. E., Schölkopf, B. & Youngblut, N. D. DeepMAsED: evaluating the quality of metagenomic assemblies. Bioinformatics 36, 3011–3017 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanco-Miguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species with MetaPhlAn 4. Nat Biotechnol. 41, 1633–1644 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 217 (2019).

    Article 

    Google Scholar
     

  • Koboldt, D. C. Best practices for variant calling in clinical sequencing. Genome Med. 12, 91 (2020).

  • Ajami, N. J., Wong, M. C., Ross, M. C., Lloyd, R. E. & Petrosino, J. F. Maximal viral information recovery from sequence data using VirMAP. Nat. Commun. 9, 3205 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Rescuing low frequency variants within intra-host viral populations directly from Oxford Nanopore sequencing data. Nat. Commun. 13, 1321 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahlin, K., Baudeau, T., Cazaux, B. & Marchet, C. A survey of mapping algorithms in the long-reads era. Genome Biol. 24, 133 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, J., Zheng, Z., Ahmed, S. S., Lam, T.-W. & Luo, R. Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks. Brief. Bioinform. 23, bbac301 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahsan, M. U., Liu, Q., Fang, L. & Wang, K. NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks. Genome Biol. 22, 261 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 40, 11189–11201 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164–e164 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dylus, D., Altenhoff, A., Majidian, S., Sedlazeck, F. J. & Dessimoz, C. Inference of phylogenetic trees directly from raw sequencing reads using Read2Tree. Nat. Biotechnol. 42, 139–147 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corel, E. et al. Bipartite network analysis of gene sharings in the microbial world. Mol. Biol. Evol. 35, 899–913 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nat. Commun. 13, 3175 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Losada, M., Arenas, M., Galán, J. C., Palero, F. & González-Candelas, F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect. Genet. Evol. 30, 296–307 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods 15, 595–597 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02024-y (2024).

  • Heller, D. & Vingron, M. SVIM-asm: structural variant detection from haploid and diploid genome assemblies. Bioinformatics 36, 5519–5521 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Geoffroy, V. et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics 34, 3572–3574 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol. 23, 271 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curry, K. D. et al. Reference-free structural variant detection in microbiomes via long-read coassembly graphs. Preprint at bioRxiv https://doi.org/10.1101/2024.01.25.577285 (2024).

  • Zhang, T. et al. N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection. Nat. Commun. 13, 6576 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barros-Silva, D., Joana Marques, C., Henrique, R. & Jerónimo, C. Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes 9, 429 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35, 4586–4595 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonet, J. et al. DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data. Bioinformatics 38, 1235–1243 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Tourancheau, A., Mead, E. A., Zhang, X. -S. & Fang, G. Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing. Nat. Methods 18, 491–498 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leger, A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Y. et al. MethPhaser: methylation-based haplotype phasing of human genomes. Preprint at bioRxiv https://doi.org/10.1101/2023.05.12.540573 (2023).

  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, F. et al. Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Sci. Rep. 8, 10950 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espinosa, E., Bautista, R., Larrosa, R. & Plata, O. Advancements in long-read genome sequencing technologies and algorithms. Genomics 116, 110842 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salamon, D. et al. Comparison of iSeq and MiSeq as the two platforms for 16S rRNA sequencing in the study of the gut of rat microbiome. Appl. Microbiol. Biotechnol. 106, 7671–7681 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41J Blog. Cost per gigabase. https://41j.com/blog/2022/09/cost-per-gigabase/ (2022).

  • Mastrorosa, F. K., Miller, D. E. & Eichler, E. E. Applications of long-read sequencing to Mendelian genetics. Genome Med. 15, 42 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar