
Terkeltaub, R. Gout & Other Crystal Arthropathies (Elsevier Health Sciences, New York, 2011).
Dalbeth, N., Gosling, A. L., Gaffo, A. & Abhishek, A. Gout. Lancet 397, 1843–1855 (2021).
Adams, F. Hippocrates: The Genuine Works of Hippocrates, Vol. I and II. (Wood, NewYork, 1886).
Faires, J. & McCarty, D. Jr. Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet 280, 682–685 (1962).
Seegmiller, J. E., Howell, R. R. & Malawista, S. E. The inflammatory reaction to sodium urate. J. Am. Med. Assoc. 180, 469–475 (1962).
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
Malawista, S. E., de Boisfleury, A. C. & Naccache, P. H. Inflammatory gout: observations over a half-century. FASEB J. 25, 4073–4078 (2011).
Xu, H. et al. Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment. Ann. Rheumatol. Dis. 82, 416–427 (2023).
McQueen, F. M., Chhana, A. & Dalbeth, N. Mechanisms of joint damage in gout: evidence from cellular and imaging studies. Nat. Rev. Rheumatol. 8, 173–181 (2012).
Chhana, A. & Dalbeth, N. The gouty tophus: a review. Curr. Rheumatol. Rep. 17, 19 (2015).
Martillo, M. A., Nazzal, L. & Crittenden, D. B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 16, 400 (2014).
Benn, C. L. et al. Physiology of hyperuricemia and urate-lowering treatments. Front. Med. 5, 160 (2018).
Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).
Muehleman, C. et al. Association between crystals and cartilage degeneration in the ankle. J. Rheumatol. 35, 1108–1117 (2008).
McGill, N. W. & Dieppe, P. A. Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann. Rheum. Dis. 50, 558–561 (1991).
Pascual, E. & Ordonez, S. Orderly arrayed deposit of urate crystals in gout suggest epitaxial formation. Ann. Rheum. Dis. 57, 255–255 (1998).
Pascual, E., Addadi, L., Andrés, M. & Sivera, F. Mechanisms of crystal formation in gout—a structural approach. Nat. Rev. Rheumatol. 11, 725–730 (2015).
Wilcox, W. R. & Khalaf, A. A. Nucleation of monosodium urate crystals. Ann. Rheum. Dis. 34, 332–339 (1975).
Tak, H. K., Cooper, S. M. & Wilcox, W. R. Studies on the nucleation of monsodium urate at 37 °C. Arthrit Rheumatol 23, 574–580 (1980).
Perl-Treves, D. & Addadi, L. A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc. R. Soc. Lond. B 235, 145–159 (1988).
Chhana, A., Lee, G. & Dalbeth, N. Factors influencing the crystallization of monosodium urate: a systematic literature review. BMC Musculoskelet. Disord. 16, 296 (2015).
Pascual, E., Andrés, M. & Vela, P. Gout treatment: should we aim for rapid crystal dissolution? Ann. Rheum. Dis. 72, 635–637 (2013).
McGill, N. W. & Dieppe, P. A. The role of serum and synovial fluid components in the promotion of urate crystal formation. J. Rheumatol. 18, 1042–1045 (1991).
Chih, M. H., Lee, H. L. & Lee, T. The culprit of gout: triggering factors and formation of monosodium urate monohydrate. CrystEngComm 18, 290–297 (2016).
Liu, Y., Cheng, R., Ou, C., Zhang, X. & Fu, T. Acetate: an alcohol metabolite as a growth promoter of pathological crystallization of gout. Cryst. Growth Des. 20, 2842–2846 (2020).
Kam, M., Perl-Treves, D., Caspi, D. & Addadi, L. Antibodies against crystals. FASEB J. 6, 2608–2613 (1992).
Kam, M., Perl-Treves, D., Sfez, R. & Addadi, L. Specificity in the recognition of crystals by antibodies. J. Molec. Recognit. 7, 257–264 (1994).
Kanevets, U., Sharma, K., Dresser, K. & Shi, Y. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J. Immunol. 182, 1912–1918 (2009).
Barkan, G. Über die Löslichkeit von harnsaurer Salze. Z. Biol. 76, 257–266 (1922).
Li, M., Li, S., Tang, W. & Gong, J. Understanding the crystallization pathway of monosodium urate monohydrate in a biomimetic matrix. Cryst. Growth Des. 20, 804–812 (2020).
Chhana, A. et al. Human cartilage homogenates influence the crystallization of monosodium urate and inflammatory response to monosodium urate crystals: a potential link between osteoarthritis and gout. Arthrit. Rheumatol. 71, 2090–2099 (2019).
Addadi, L. & Weiner, S. Control and design principles in biological mineralization. Angew. Chem. Int. Ed. 31, 153–169 (1992).
Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).
Rodríguez-Navarro, C., Ruiz-Agudo, E., Harris, J. & Wolf, S. E. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J. Struct. Biol. 196, 260–287 (2016).
Deng, Z., Jia, Z. & Li, L. Biomineralized materials as model systems for structural composites: Intracrystalline structural features and their strengthening and toughening mechanisms. Adv. Sci. 9, 2103524 (2022).
Mandel, N. S. & Mandel, G. S. Monosodium urate monohydrate, the gout culprit. J. Am. Chem. Soc. 98, 2319–2323 (1976).
Paul, H., Reginato, A. J. & Schumacher, H. R. Morphological characteristics of monosodium urate: a transmission electron microscopic study of intact natural and synthetic crystals. Ann. Rheum. Dis. 42, 75–81 (1983).
Fam, A. G., Reis, M. D. & Szalai, J. P. Acute gouty synovitis associated with “urate milk”. J. Rheumatol. 24, 2389–2393 (1997).
Fiechtner, J. J. & Simkin, P. A. Urate spherulites in gouty synovia. JAMA 245, 1533–1536 (1981).
Zhou, Y., Feng, X., Wang, T., Tian, Y. & Cui, X. Growth and inhibition of monohydrate sodium urate banded spherulites. CrystEngComm 23, 1439–1446 (2021).
Perrin, C. M., Dobish, M. A., Van Keuren, E. & Swift, J. A. Monosodium urate monohydrate crystallization. CrystEngComm 13, 1111–1117 (2011).
Rodriguez-Navarro, C., Burgos-Cara, A., Elert, K., Putnis, C. V. & Ruiz-Agudo, E. Direct nanoscale imaging reveals the growth of calcite crystals via amorphous nanoparticles. Cryst. Growth Des. 16, 1850–1860 (2016).
Gebauer, D., Volkel, A. & Colfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).
Ruiz-Agudo, E. et al. A non-classical view on calcium oxalate precipitation and the role of citrate. Nat. Commun. 8, 768 (2017).
Finlayson, B. & Smith, A. Stability of first dissociable proton of uric acid. J. Chem. Eng. Data 19, 94–97 (1974).
Wang, Z. & Königsberger, E. Solubility equilibria in the uric acid–sodium urate–water system. Thermochim. Acta 310, 237–242 (1998).
Pokroy, B., Fitch, A. & Zolotoyabko, E. The microstructure of biogenic calcite: a view by high‐resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368 (2006).
Snell, E. H. et al. Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Cryst. D. 51, 1099–1102 (1995).
Chernov, A. A. Crystal growth and crystallography. Acta Cryst. A 54, 859–872 (1998).
Sharma, P., Biswas, K., Mondal, A. K. & Chattopadhyay, K. Size effect on the lattice parameter of KCl during mechanical milling. Scr. Mater. 61, 600–603 (2009).
Debelle, A. et al. Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism. Phys. Rev. Mater. 2, 013604 (2018).
Huitema, E. & Van Der Eerden, J. P. Defect formation during crystal growth. J. Cryst. Growth 166, 141–145 (1996).
Wojciechowski, K. Growth rates of sodium chlorate crystals grown from aqueous solution in relation to internal strain. Cryst. Res. Technol. 34, 661–666 (1999).
<a data-track="click||click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1521-4079(199906)34:5/63.0.CO;2-8″ data-track-item_id=”10.1002/(SICI)1521-4079(199906)34:5/63.0.CO;2-8″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291521-4079%28199906%2934%3A5%2F6%3C661%3A%3AAID-CRAT661%3E3.0.CO%3B2-8″ aria-label=”Article reference 53″ data-doi=”10.1002/(SICI)1521-4079(199906)34:5/63.0.CO;2-8″>Article
CAS
Google Scholar
Calvert, P. D., Fiddis, R. W. & Vlachos, N. Crystal growth of monosodium urate monohydrate. Colloid Surf. 14, 97–107 (1985).
Roddy, E., Zhang, W. & Doherty, M. Are joints affected by gout also affected by osteoarthritis? Ann. Rheum. Dis. 66, 1374–1377 (2007).
Xu, H., Qin, H., Hua, Y. & Dalbeth, N. Contributions of joint damage-related events to gout pathogenesis: new insights from laboratory research. Ann. Rheum. Dis. 82, 1511–1515 (2023).
Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).
Denoble, A. E. et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc. Natl Acad. Sci. 108, 2088–2093 (2011).
Rouault, T., Caldwell, D. S. & Holmes, E. W. Aspiration of the asymptomatic metatarsophalangeal joint in gout patients and hyperuricemic controls. Arthrit. Rheumatol. 25, 209–212 (1982).
Andrés, M., Bernal, J. A., Arenas, M. D. & Pascual, E. Synovial fluid leukocyte count in asymptomatic hyperuricaemia with crystal deposition: a proof-of-concept study. Rheumatology 58, 1104–1105 (2019).
Pascual, E., Batlle-Gualda, E., Martínez, A., Rosas, J. & Vela, P. Synovial fluid analysis for diagnosis of intercritical gout. Ann. Intern. Med. 131, 756–759 (1999).
Ortiz‐Bravo, E., Sieck, M. S. & Schumacher, H. R. Jr Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Arthrit. Rheumatol. 36, 1274–1285 (1993).
Terkeltaub, R. What makes gouty inflammation so variable? BMC Med. 15, 158 (2017).
Parekh, B. et al. In vitro growth and inhibition studies of monosodium urate monohydrate crystals by different herbal extracts. Am. J. Infect. Dis. 5, 225–230 (2009).
Ruiz-Agudo, E. et al. Citrate stabilizes hydroxylapatite precursors: implications for bone mineralization. ACS Biomater. Sci. Eng. 7, 2346–2357 (2021).
McCleskey, R. B., Nordstrom, D. K., Ryan, J. N. & Ball, J. W. A new method of calculating electrical conductivity with applications to natural waters. Geochim. Cosmochim. Acta 77, 369–382 (2012).
Mikulski, C. M. et al. Urate complexes of dipositive first row transition metal ions. Transit. Met. Chem. 19, 491–493 (1994).
Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).
Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 22–31 (1953).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s42003-024-06534-6