Unraveling the pathological biomineralization of monosodium urate crystals in gout patients – Communications Biology

  • Terkeltaub, R. Gout & Other Crystal Arthropathies (Elsevier Health Sciences, New York, 2011).

  • Dalbeth, N., Gosling, A. L., Gaffo, A. & Abhishek, A. Gout. Lancet 397, 1843–1855 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams, F. Hippocrates: The Genuine Works of Hippocrates, Vol. I and II. (Wood, NewYork, 1886).

  • Faires, J. & McCarty, D. Jr. Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet 280, 682–685 (1962).

    Article 

    Google Scholar
     

  • Seegmiller, J. E., Howell, R. R. & Malawista, S. E. The inflammatory reaction to sodium urate. J. Am. Med. Assoc. 180, 469–475 (1962).

    CAS 

    Google Scholar
     

  • Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malawista, S. E., de Boisfleury, A. C. & Naccache, P. H. Inflammatory gout: observations over a half-century. FASEB J. 25, 4073–4078 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment. Ann. Rheumatol. Dis. 82, 416–427 (2023).

    Article 
    CAS 

    Google Scholar
     

  • McQueen, F. M., Chhana, A. & Dalbeth, N. Mechanisms of joint damage in gout: evidence from cellular and imaging studies. Nat. Rev. Rheumatol. 8, 173–181 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chhana, A. & Dalbeth, N. The gouty tophus: a review. Curr. Rheumatol. Rep. 17, 19 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Martillo, M. A., Nazzal, L. & Crittenden, D. B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 16, 400 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benn, C. L. et al. Physiology of hyperuricemia and urate-lowering treatments. Front. Med. 5, 160 (2018).

    Article 

    Google Scholar
     

  • Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muehleman, C. et al. Association between crystals and cartilage degeneration in the ankle. J. Rheumatol. 35, 1108–1117 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGill, N. W. & Dieppe, P. A. Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann. Rheum. Dis. 50, 558–561 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascual, E. & Ordonez, S. Orderly arrayed deposit of urate crystals in gout suggest epitaxial formation. Ann. Rheum. Dis. 57, 255–255 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascual, E., Addadi, L., Andrés, M. & Sivera, F. Mechanisms of crystal formation in gout—a structural approach. Nat. Rev. Rheumatol. 11, 725–730 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilcox, W. R. & Khalaf, A. A. Nucleation of monosodium urate crystals. Ann. Rheum. Dis. 34, 332–339 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tak, H. K., Cooper, S. M. & Wilcox, W. R. Studies on the nucleation of monsodium urate at 37 °C. Arthrit Rheumatol 23, 574–580 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Perl-Treves, D. & Addadi, L. A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc. R. Soc. Lond. B 235, 145–159 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chhana, A., Lee, G. & Dalbeth, N. Factors influencing the crystallization of monosodium urate: a systematic literature review. BMC Musculoskelet. Disord. 16, 296 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascual, E., Andrés, M. & Vela, P. Gout treatment: should we aim for rapid crystal dissolution? Ann. Rheum. Dis. 72, 635–637 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGill, N. W. & Dieppe, P. A. The role of serum and synovial fluid components in the promotion of urate crystal formation. J. Rheumatol. 18, 1042–1045 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Chih, M. H., Lee, H. L. & Lee, T. The culprit of gout: triggering factors and formation of monosodium urate monohydrate. CrystEngComm 18, 290–297 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Cheng, R., Ou, C., Zhang, X. & Fu, T. Acetate: an alcohol metabolite as a growth promoter of pathological crystallization of gout. Cryst. Growth Des. 20, 2842–2846 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kam, M., Perl-Treves, D., Caspi, D. & Addadi, L. Antibodies against crystals. FASEB J. 6, 2608–2613 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kam, M., Perl-Treves, D., Sfez, R. & Addadi, L. Specificity in the recognition of crystals by antibodies. J. Molec. Recognit. 7, 257–264 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Kanevets, U., Sharma, K., Dresser, K. & Shi, Y. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J. Immunol. 182, 1912–1918 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barkan, G. Über die Löslichkeit von harnsaurer Salze. Z. Biol. 76, 257–266 (1922).

    CAS 

    Google Scholar
     

  • Li, M., Li, S., Tang, W. & Gong, J. Understanding the crystallization pathway of monosodium urate monohydrate in a biomimetic matrix. Cryst. Growth Des. 20, 804–812 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chhana, A. et al. Human cartilage homogenates influence the crystallization of monosodium urate and inflammatory response to monosodium urate crystals: a potential link between osteoarthritis and gout. Arthrit. Rheumatol. 71, 2090–2099 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Addadi, L. & Weiner, S. Control and design principles in biological mineralization. Angew. Chem. Int. Ed. 31, 153–169 (1992).

    Article 

    Google Scholar
     

  • Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Navarro, C., Ruiz-Agudo, E., Harris, J. & Wolf, S. E. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J. Struct. Biol. 196, 260–287 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, Z., Jia, Z. & Li, L. Biomineralized materials as model systems for structural composites: Intracrystalline structural features and their strengthening and toughening mechanisms. Adv. Sci. 9, 2103524 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mandel, N. S. & Mandel, G. S. Monosodium urate monohydrate, the gout culprit. J. Am. Chem. Soc. 98, 2319–2323 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul, H., Reginato, A. J. & Schumacher, H. R. Morphological characteristics of monosodium urate: a transmission electron microscopic study of intact natural and synthetic crystals. Ann. Rheum. Dis. 42, 75–81 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fam, A. G., Reis, M. D. & Szalai, J. P. Acute gouty synovitis associated with “urate milk”. J. Rheumatol. 24, 2389–2393 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Fiechtner, J. J. & Simkin, P. A. Urate spherulites in gouty synovia. JAMA 245, 1533–1536 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y., Feng, X., Wang, T., Tian, Y. & Cui, X. Growth and inhibition of monohydrate sodium urate banded spherulites. CrystEngComm 23, 1439–1446 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perrin, C. M., Dobish, M. A., Van Keuren, E. & Swift, J. A. Monosodium urate monohydrate crystallization. CrystEngComm 13, 1111–1117 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez-Navarro, C., Burgos-Cara, A., Elert, K., Putnis, C. V. & Ruiz-Agudo, E. Direct nanoscale imaging reveals the growth of calcite crystals via amorphous nanoparticles. Cryst. Growth Des. 16, 1850–1860 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gebauer, D., Volkel, A. & Colfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz-Agudo, E. et al. A non-classical view on calcium oxalate precipitation and the role of citrate. Nat. Commun. 8, 768 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finlayson, B. & Smith, A. Stability of first dissociable proton of uric acid. J. Chem. Eng. Data 19, 94–97 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. & Königsberger, E. Solubility equilibria in the uric acid–sodium urate–water system. Thermochim. Acta 310, 237–242 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Pokroy, B., Fitch, A. & Zolotoyabko, E. The microstructure of biogenic calcite: a view by high‐resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Snell, E. H. et al. Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Cryst. D. 51, 1099–1102 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Chernov, A. A. Crystal growth and crystallography. Acta Cryst. A 54, 859–872 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, P., Biswas, K., Mondal, A. K. & Chattopadhyay, K. Size effect on the lattice parameter of KCl during mechanical milling. Scr. Mater. 61, 600–603 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Debelle, A. et al. Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism. Phys. Rev. Mater. 2, 013604 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Huitema, E. & Van Der Eerden, J. P. Defect formation during crystal growth. J. Cryst. Growth 166, 141–145 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Wojciechowski, K. Growth rates of sodium chlorate crystals grown from aqueous solution in relation to internal strain. Cryst. Res. Technol. 34, 661–666 (1999).

    <a data-track="click||click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1521-4079(199906)34:5/63.0.CO;2-8″ data-track-item_id=”10.1002/(SICI)1521-4079(199906)34:5/63.0.CO;2-8″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291521-4079%28199906%2934%3A5%2F6%3C661%3A%3AAID-CRAT661%3E3.0.CO%3B2-8″ aria-label=”Article reference 53″ data-doi=”10.1002/(SICI)1521-4079(199906)34:5/63.0.CO;2-8″>Article 
    CAS 

    Google Scholar
     

  • Calvert, P. D., Fiddis, R. W. & Vlachos, N. Crystal growth of monosodium urate monohydrate. Colloid Surf. 14, 97–107 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Roddy, E., Zhang, W. & Doherty, M. Are joints affected by gout also affected by osteoarthritis? Ann. Rheum. Dis. 66, 1374–1377 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H., Qin, H., Hua, Y. & Dalbeth, N. Contributions of joint damage-related events to gout pathogenesis: new insights from laboratory research. Ann. Rheum. Dis. 82, 1511–1515 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denoble, A. E. et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc. Natl Acad. Sci. 108, 2088–2093 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouault, T., Caldwell, D. S. & Holmes, E. W. Aspiration of the asymptomatic metatarsophalangeal joint in gout patients and hyperuricemic controls. Arthrit. Rheumatol. 25, 209–212 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Andrés, M., Bernal, J. A., Arenas, M. D. & Pascual, E. Synovial fluid leukocyte count in asymptomatic hyperuricaemia with crystal deposition: a proof-of-concept study. Rheumatology 58, 1104–1105 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pascual, E., Batlle-Gualda, E., Martínez, A., Rosas, J. & Vela, P. Synovial fluid analysis for diagnosis of intercritical gout. Ann. Intern. Med. 131, 756–759 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz‐Bravo, E., Sieck, M. S. & Schumacher, H. R. Jr Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Arthrit. Rheumatol. 36, 1274–1285 (1993).

    Article 

    Google Scholar
     

  • Terkeltaub, R. What makes gouty inflammation so variable? BMC Med. 15, 158 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parekh, B. et al. In vitro growth and inhibition studies of monosodium urate monohydrate crystals by different herbal extracts. Am. J. Infect. Dis. 5, 225–230 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz-Agudo, E. et al. Citrate stabilizes hydroxylapatite precursors: implications for bone mineralization. ACS Biomater. Sci. Eng. 7, 2346–2357 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCleskey, R. B., Nordstrom, D. K., Ryan, J. N. & Ball, J. W. A new method of calculating electrical conductivity with applications to natural waters. Geochim. Cosmochim. Acta 77, 369–382 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mikulski, C. M. et al. Urate complexes of dipositive first row transition metal ions. Transit. Met. Chem. 19, 491–493 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 22–31 (1953).

    Article 
    CAS 

    Google Scholar