Trials and tribulations of cell therapy for heart failure: an update on ongoing trials

  • Maron, B. J., Estes, N. A. M., Rowin, E. J., Maron, M. S. & Reynolds, M. R. Development of the implantable cardioverter-defibrillator: JACC historical breakthroughs in perspective. J. Am. Coll. Cardiol. 82, 353–373 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Malgie, J., Clephas, P. R. D., Brunner-La Rocca, H. P., de Boer, R. A. & Brugts, J. J. Guideline-directed medical therapy for HFrEF: sequencing strategies and barriers for life-saving drug therapy. Heart Fail. Rev. 28, 1221–1234 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, N. R., Hobbs, F. R. & Taylor, C. J. Prognosis following a diagnosis of heart failure and the role of primary care: a review of the literature. BJGP Open 1, bjgpopen17X101013 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozkurt, B. et al. Heart failure epidemiology and outcomes statistics: a report of the Heart Failure Society of America. J. Card. Fail. 29, 1412–1451 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Packer, M. Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72, 681–685 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gradman, A. et al. Predictors of total mortality and sudden death in mild to moderate heart failure. Captopril-Digoxin Study Group. J. Am. Coll. Cardiol. 14, 564–570 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unverferth, D. V. et al. Factors influencing the one-year mortality of dilated cardiomyopathy. Am. J. Cardiol. 54, 147–152 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138, e272–e391 (2018).

    PubMed 

    Google Scholar
     

  • Moss, A. J. et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N. Engl. J. Med. 335, 1933–1940 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ammannaya, G. K. K. Implantable cardioverter defibrillators — the past, present and future. Arch. Med. Sci. Atheroscler. Dis. 5, e163–e170 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck, C. S., Pritchard, W. H. & Feil, H. S. Ventricular fibrillation of long duration abolished by electric shock. J. Am. Med. Assoc. 135, 985 (1947).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuder, J. C., Stoeckle, H., Gold, J. H., West, J. A. & Keskar, P. Y. Experimental ventricular defibrillation with an automatic and completely implanted system. Trans. Am. Soc. Artif. Intern. Organs 16, 207–212 (1970).

    CAS 
    PubMed 

    Google Scholar
     

  • Mirowski, M., Mower, M. M., Staewen, W. S., Tabatznik, B. & Mendeloff, A. I. Standby automatic defibrillator. An approach to prevention of sudden coronary death. Arch. Intern. Med. 126, 158–161 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirowski, M., Mower, M. M., Gott, V. L. & Brawley, R. K. Feasibility and effectiveness of low-energy catheter defibrillation in man. Circulation 47, 79–85 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lown, B. & Axelrod, P. Implanted standby defibrillators. Circulation 46, 637–639 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirowski, M. et al. Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings. N. Engl. J. Med. 303, 322–324 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators.A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N. Engl. J. Med. 337, 1576–1583 (1997).

    Article 

    Google Scholar
     

  • Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Greenberg, H. et al. Analysis of mortality events in the Multicenter Automatic Defibrillator Implantation Trial (MADIT-II). J. Am. Coll. Cardiol. 43, 1459–1465 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, T. W. Digoxin in heart failure. N. Engl. J. Med. 329, 51–53 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kjekshus, J., Swedberg, K. & Snapinn, S. Effects of enalapril on long-term mortality in severe congestive heart failure. CONSENSUS Trial Group. Am. J. Cardiol. 69, 103–107 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yusuf, S., Pitt, B., Davis, C. E., Hood, W. B. & Cohn, J. N. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325, 293–302 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Yusuf, S., Pitt, B., Davis, C. E., Hood, W. B. Jr. & Cohn, J. N. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N. Engl. J. Med. 327, 685–691 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • No authors listed. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

    Article 

    Google Scholar
     

  • No authors listed. The cardiac insufficiency bisoprolol study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).

    Article 

    Google Scholar
     

  • Teerlink, J. R. & Massie, B. M. Beta-adrenergic blocker mortality trials in congestive heart failure. Am. J. Cardiol. 84, 94r–102r (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doggrell, S. A. & Brown, L. Present and future pharmacotherapy for heart failure. Expert Opin. Pharmacother. 3, 915–930 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmad, T. et al. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials. Eur. J. Heart Fail. 21, 1064–1078 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE study research group. N. Engl. J. Med. 325, 1468–1475 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohn, J. N. et al. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone Trial Investigators. N. Engl. J. Med. 339, 1810–1816 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connor, C. M. et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am. Heart J. 138, 78–86 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Packer, M. et al. Long-term effects of flosequinan on the morbidity and mortality of patients with severe chronic heart failure: primary results of the PROFILE trial after 24 years. JACC Heart Fail. 5, 399–407 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kaye, D. M. & Krum, H. Drug discovery for heart failure: a new era or the end of the pipeline? Nat. Rev. Drug Discov. 6, 127–139 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohn, J. N. & Tognoni, G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menasché, P. Cell therapy of heart failure. C. R. Biol. 325, 731–738 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Ye, L. et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15, 750–761 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tompkins, B. A. et al. Preclinical studies of stem cell therapy for heart disease. Circ. Res. 122, 1006–1020 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, H., Olson, E. N. & Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 15, 585–600 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raval, A. N. & Pepine, C. J. Clinical safety profile of transendocardial catheter injection systems: a plea for uniform reporting. Cardiovasc. Revasc Med. 22, 100–108 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Banerjee, M. N., Bolli, R. & Hare, J. M. Clinical studies of cell therapy in cardiovascular medicine: recent developments and future directions. Circ. Res. 123, 266–287 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680–686 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, L. et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 115, 1866–1875 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Wysoczynski, M., Khan, A. & Bolli, R. New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ. Res. 123, 138–158 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Smits, P. C. et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42, 2063–2069 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Pagani, F. D. et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol. 41, 879–888 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Menasché, P. et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 41, 1078–1083 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Chong, J. J. & Murry, C. E. Cardiac regeneration using pluripotent stem cells — progression to large animal models. Stem Cell Res. 13, 654–665 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miura, K. et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27, 743–745 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menasché, P. et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 71, 429–438 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Rafatian, G. & Davis, D. R. Concise review: heart-derived cell therapy 2.0: paracrine strategies to increase therapeutic repair of injured myocardium. Stem Cell 36, 1794–1803 (2018).

    Article 

    Google Scholar
     

  • Kanda, P. & Davis, D. R. Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opin. Biol. Ther. 17, 1127–1143 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • No authors listed. Value of criticism. Nature 135, 614 (1935).

    Article 

    Google Scholar
     

  • Curfman, G. Stem cell therapy for heart failure: an unfulfilled promise? JAMA 321, 1186–1187 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • No authors listed. A futile cycle in cell therapy. Nat. Biotechnol. 35, 291 (2017).

    Article 

    Google Scholar
     

  • Madonna, R. et al. Position paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J. 37, 1789–1798 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mozid, A. et al. Safety and feasibility of intramyocardial versus intracoronary delivery of autologous cell therapy in advanced heart failure: the REGENERATE-IHD pilot study. Regen. Med. 9, 269–278 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández-Avilés, F. et al. Safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with ST-segment elevation myocardial infarction and left ventricular dysfunction. Circ. Res. 123, 579–589 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, A. N. et al. Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial. Lancet 387, 2412–2421 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolli, R. et al. A phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the CCTRN CONCERT-HF trial. Eur. J. Heart Fail. 23, 661–674 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, W. J., Clarke, S. A., Quinn, T. A. & Holmes, J. W. Physiological implications of myocardial scar structure. Compr. Physiol. 5, 1877–1909 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. & Weber, K. T. Infarct scar: a dynamic tissue. Cardiovasc. Res. 46, 250–256 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevenson, W. G. Ventricular scars and ventricular tachycardia. Trans. Am. Clin. Climatol. Assoc. 120, 403–412 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vähätalo, J. H. et al. Association of silent myocardial infarction and sudden cardiac death. JAMA Cardiol. 4, 796–802 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zipes, D. P. & Wellens, H. J. Sudden cardiac death. Circulation 98, 2334–2351 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Echt, D. S. et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N. Engl. J. Med. 324, 781–788 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardiac Arrhythmia Suppression Trial II Investigators.Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N. Engl. J. Med. 327, 227–233 (1992).

    Article 

    Google Scholar
     

  • Akam, E. A. Dynamics of collagen oxidation and cross linking in regenerating and irreversibly infarcted myocardium. Nat. Commun. 15, 4648 (2024).

    Article 

    Google Scholar
     

  • Leanca, S. A. et al. Left ventricular remodeling after myocardial infarction: from physiopathology to treatment. Life 12, 1111 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besse, S., Nadaud, S., Balse, E. & Pavoine, C. Early protective role of inflammation in cardiac remodeling and heart failure: focus on TNFα and resident macrophages. Cells 11, 1249 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narula, J., Haider, N., Arbustini, E. & Chandrashekhar, Y. Mechanisms of disease: apoptosis in heart failure — seeing hope in death. Nat. Clin. Pract. Cardiovasc. Med. 3, 681–688 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Mesenchymal stem cell immunomodulation: a novel intervention mechanism in cardiovascular disease. Front. Cell Dev. Biol. 9, 742088 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Basic and translational research in cardiac repair and regeneration: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78, 2092–2105 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed. Pharmacother. 169, 115870 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Zhu, W., Radisic, M. & Vunjak-Novakovic, G. Can we engineer a human cardiac patch for therapy? Circ. Res. 123, 244–265 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chin, S. P., Mohd-Shahrizal, M. Y., Liyana, M. Z., Then, K. Y. & Cheong, S. K. High dose of intravenous allogeneic umbilical cord-derived mesenchymal stem cells (CLV-100) infusion displays better immunomodulatory effect among healthy volunteers: a phase 1 clinical study. Stem Cell Int. 2020, 8877003 (2020).


    Google Scholar
     

  • Bartunek, J. et al. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur. Heart J. 38, 648–660 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Perin, E. C. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307, 1717–1726 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martino, H. et al. Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). Eur. Heart J. 36, 2898–2904 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Heldman, A. W. et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311, 62–73 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henry, T. D. et al. The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheter. Cardiovasc. Interv. 89, 169–177 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Qayyum, A. A. et al. Danish phase II trial using adipose tissue derived mesenchymal stromal cells for patients with ischaemic heart failure. ESC Heart Fail. 10, 1170–1183 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qayyum, A. A. et al. Effect of allogeneic adipose tissue-derived mesenchymal stromal cell treatment in chronic ischaemic heart failure with reduced ejection fraction — the SCIENCE trial. Eur. J. Heart Fail. 25, 576–587 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathiasen, A. B. et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial. Eur. J. Heart Fail. 22, 884–892 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perin, E. C. et al. Randomized trial of targeted transendocardial mesenchymal precursor cell therapy in patients with heart failure. J. Am. Coll. Cardiol. 81, 849–863 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolli, R. et al. Allogeneic mesenchymal cell therapy in anthracycline-induced cardiomyopathy heart failure patients: the CCTRN SENECA trial. JACC CardioOncol. 2, 581–595 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartolucci, J. et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ. Res. 121, 1192–1204 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Didie, M. et al. Parthenogenetic stem cells for tissue-engineered heart repair. J. Clin. Invest. 123, 1285–1298 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riegler, J. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117, 720–730 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, W. H. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12, 452–458 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menasche, P. et al. First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report. EBioMedicine 103, 105145 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05068674 (2024).

  • Siimes, S., Jarvelainen, N., Korpela, H. & Yla-Herttuala, S. Endocardial gene delivery using NOGA catheter system. Methods Mol. Biol. 2573, 179–187 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04945018 (2024).

  • Kawaguchi, S. et al. Intramyocardial transplantation of human iPS cell-derived cardiac spheroids improves cardiac function in heart failure animals. JACC Basic Transl. Sci. 6, 239–254 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabei, R. et al. Development of a transplant injection device for optimal distribution and retention of human induced pluripotent stem cell-derived cardiomyocytes. J. Heart Lung Transpl. 38, 203–214 (2019).

    Article 

    Google Scholar
     

  • Kobayashi, H. et al. Regeneration of nonhuman primate hearts with human induced pluripotent stem cell-derived cardiac spheroids. Circulation 150, 611–621 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03763136 (2024).

  • Zhang, H. et al. Epicardial injection of allogeneic human-induced-pluripotent stem cell-derived cardiomyocytes in patients with advanced heart failure: protocol for a phase I/IIa dose-escalation clinical trial. BMJ Open 12, e056264 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04982081 (2022).

  • Kainuma, S. et al. Long-term outcomes of autologous skeletal myoblast cell-sheet transplantation for end-stage ischemic cardiomyopathy. Mol. Ther. 29, 1425–1438 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araki, K. et al. Autologous skeletal myoblast sheet implantation for pediatric dilated cardiomyopathy: a case report. Gen. Thorac. Cardiovasc. Surg. 69, 859–861 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kawamura, T. et al. Safety confirmation of induced pluripotent stem cell-derived cardiomyocyte patch transplantation for ischemic cardiomyopathy: first three case reports. Front. Cardiovasc. Med. 10, 1182209 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04396899 (2023).

  • Hare, J. M. et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J. Am. Coll. Cardiol. 69, 526–537 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Rieger, A. C. et al. Genetic determinants of responsiveness to mesenchymal stem cell injections in non-ischemic dilated cardiomyopathy. EBioMedicine 48, 377–385 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04476901 (2023).

  • Kaushal, S. et al. Intramyocardial cell-based therapy with Lomecel-B during bidirectional cavopulmonary anastomosis for hypoplastic left heart syndrome: the ELPIS phase I trial. Eur. Heart J. Open 3, oead002 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04925024 (2024).

  • Mushtaq, M. et al. Rationale and design of the percutaneous stem cell injection delivery effects on neomyogenesis in dilated cardiomyopathy (the POSEIDON-DCM study): a phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy. J. Cardiovasc. Transl. Res. 7, 769–780 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, D. et al. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 12, 1412 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, J. et al. A minimally invasive exosome spray repairs heart after myocardial infarction. ACS Nano 15, 11099–11111 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whyte, W. et al. Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nat. Biomed. Eng. 2, 416–428 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng, C. C., Zhou, L. & Hao, J. Current stem cell delivery methods for myocardial repair. Biomed. Res. Int. 2013, 547902 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, W. & Law, P. K. Conceptual design and procedure for an autonomous intramyocardial injection catheter. Cell Transpl. 26, 735–751 (2017).

    Article 

    Google Scholar
     

  • Bartunek, J. & Terzic, A. optimized catheter system demonstrates utility for endomyocardial delivery of cardiopoietic stem cells in target patients with heart failure. Tex. Heart Inst. J. 50, e238247 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06145035 (2024).

  • Sanganalmath, S. K. & Bolli, R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 113, 810–834 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasir, K. et al. The Miami Heart Study (MiHeart) at Baptist Health South Florida, a prospective study of subclinical cardiovascular disease and emerging cardiovascular risk factors in asymptomatic young and middle-aged adults: the Miami Heart Study: rationale and design. Am. J. Prev. Cardiol. 7, 100202 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henry, T. D. et al. The ixCELL-DCM trial: rationale and design. Cell Transpl. 25, 1689–1699 (2016).

    Article 

    Google Scholar
     

  • Mathiasen, A. B. et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur. Heart J. 36, 1744–1753 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bongiovanni, A. et al. Randomised phase II trial of CAPTEM or FOLFIRI as SEcond-line therapy in NEuroendocrine CArcinomas and exploratory analysis of predictive role of PET/CT imaging and biological markers (SENECA trial): a study protocol. BMJ Open 10, e034393 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05566600 (2023).