Transcriptomic analysis reveals role of lncRNA LOC100257036 to regulate AGAMOUS during cluster compactness of Vitis vinifera cv. sistan yaghooti

  • Richter, R. et al. Differential expression of transcription factor-and further growth-related genes correlates with contrasting cluster architecture in Vitis vinifera ‘Pinot Noir’and Vitis spp genotypes. Theor. Appl. Genet. 133, 3249–3272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiri, Y., Solouki, M., Ebrahimie, E., Emamjomeh, A. & Zahiri, J. Unraveling the transcriptional complexity of compactness in sistan grape cluster. Plant Sci. 270, 198–208 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molitor, D., Behr, M., Hoffmann, L. & Evers, D. Impact of grape cluster division on cluster morphology and bunch rot epidemic. Am. J. Enol. Vitic. 63, 508–514 (2012).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 44, D203–D208 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaiti, F. et al. Dynamic and widespread lncRNA expression in a sponge and the origin of animal complexity. Mol. Biol. Evol. 32, 2367–2382 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell. 136, 629–641 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roule, T. et al. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Mol. Plant. 15, 840–856 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazin, J. et al. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc. Natl. Acad. Sci. 114, E10018–E10027 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Severing, E. et al. Arabidopsis thaliana ambient temperature responsive lncRNAs. BMC Plant Biol. 18, 1–10 (2018).

    Article 

    Google Scholar
     

  • Heo, J. B. & Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 331, 76–79 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Identification and genetic analysis of alternative splicing of long non-coding RNAs in tomato initial flowering stage. Genomics. 112, 897–907 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. The long noncoding RNA FRILAIR regulates strawberry fruit ripening by functioning as a noncanonical target mimic. PLoS Genet. 17, e1009461 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, C. et al. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci. China Life Sci. 59, 164–171 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, Y., Sharma, A., Singh, K. & Upadhyay, S. K. Long non-coding RNAs as emerging regulators of pathogen response in plants. Non-coding RNA. 8, 4 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murthy, V. S. et al. Identification of Banana heat responsive long non-coding RNAs and their gene expression analysis. bioRxiv, 491188 (2022).

  • Shiri, Y., Solouki, M., Ebrahimie, E., Emamjomeh, A. & Zahiri, J. Gibberellin causes wide transcriptional modifications in the early stage of grape cluster development. Genomics. 112, 820–830 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Japelaghi, R. H., Haddad, R. & Garoosi, G. A. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol. Biotechnol. 49, 129–137 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, S. FastQC: A quality control tool for high throughput sequence data 2010 http.qubeshub.org/resources/fastqc (2017).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. & Langmead, B. Salzberg SLHISAT. A fast spliced aligner with low memory requirements. Nat. Methods. 12, 357–360 (2015).

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, H. et al. Genome-wide identification and characterization of long noncoding RNAs during peach (Prunus persica) fruit development and ripening. Sci. Rep. 12, 11044 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corona-Gomez, J. A. et al. Transcriptome-guided annotation and functional classification of long non-coding RNAs in Arabidopsis thaliana. Sci Rep. 12, 14063 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, Y. J. et al. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45, W12–W16 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G. et al. Characterization and identification of long non-coding RNAs based on feature relationship. Bioinformatics. 35, 2949–2956 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wucher, V. et al. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 45, e57–e57 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 47, D155-d162 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schattner, P., Brooks, A. & Lowe, T. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 33, W686–W689 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. barrnap 0.9: rapid ribosomal RNA prediction. https://github.com/tseemann/barrnap (2013).

  • Kalvari, I. et al. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Marsico, M., Paytuvi Gallart, A., Sanseverino, W. & Aiese Cigliano, R. GreeNC 2.0: A comprehensive database of plant long non-coding RNAs. Nucleic Acids Res. 50, D1442–D1447 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szczesniak, M. W., Bryzghalov, O., Ciomborowska-Basheer, J. & Makałowska, I. CANTATAdb 2.0: expanding the collection of plant long noncoding RNAs. Plant Long Non-Coding RNAs: Methods and Protocols. 415–429 (2019).

  • Fang, S. et al. NONCODEV5: A comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 46, D308-d314 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, J. et al. PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Res. 49, D1489–D1495 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augustino, S. et al. Integrated analysis of lncRNAs and mRNAs reveals key trans-target genes associated with ETEC-F4ac adhesion phenotype in porcine small intestine epithelial cells. BMC Genom. 21, 1–14 (2020).

    Article 

    Google Scholar
     

  • Sherman, B. T. et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216-221 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, X., Zhuang, Z. & Zhao, P. X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber, A. R., Bernhart, S. H. & Lorenz, R. The ViennaRNA web services. RNA Bioinformatics. 307–326 (2015).

  • Kohl, M., Wiese, S. & Warscheid, B. Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics: From standards to applications. 291–303 (2011).

  • Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J. & Gao, G. PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71-74 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y., Ouyang, Y. & Yao, W. shinyCircos: An R/Shiny application for interactive creation of Circos plot. Bioinformatics. 34, 1229–1231 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia, G., Sharma, S., Upadhyay, S. K. & Singh, K. Long non-coding RNAs coordinate developmental transitions and other key biological processes in grapevine. Sci. Rep. 9, 3552 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. L., Wang, Z. G., Yu, Y. H. & Guo, D. L. Genome-wide identification and characterization of long non-coding RNAs involved in grape berry ripening. J. Berry Res. 10, 475–496 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J., Wang, H. & Chua, N. H. Long noncoding RNA transcriptome of plants. Plant Biotechnol. J. 13, 319–328 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dry, P. R., Longbottom, M., McLoughlin, S., Johnson, T. E. & Collins, C. Classification of reproductive performance of ten winegrape varieties. Aust. J. Grape Wine Res. 16, 47–55 (2010).

    Article 

    Google Scholar
     

  • Zheng, Y., Ren, N., Wang, H., Stromberg, A. J. & Perry, S. E. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell. 21, 2563–2577 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pool, R. M. Effect of cytokinin on in vitro development of concord’ flowers. Am. J. Enol. Vitic. 26, 43–46 (1975).

    Article 

    Google Scholar
     

  • Ma, J., Zhao, P., Liu, S., Yang, Q. & Guo, H. The control of developmental phase transitions by microRNAs and their targets in seed plants. Int. J. Mol. Sci. 21, 1971 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, G. F. F. E. et al. micro RNA 156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J. 78, 604–618 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lv, Y. et al. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genom. 17, 1–15 (2016).

    Article 

    Google Scholar
     

  • Su, Z. et al. Characterization and regulatory mechanism analysis of VvmiR156a–VvAGL80 pair during grapevine flowering and parthenocarpy process induced by gibberellin. Plant Genome 15, e20181 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feller, A., Machemer, K., Braun, E. L. & Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66, 94–116 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Hydrogen sulfide, a signaling molecule in plant stress responses. J. Integr Plant Biol. 63, 146–160 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez, C., Calo, L., Romero, L. C., Garcia, I. & Gotor, C. An O-acetylserine (thiol) lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol. 152, 656–669 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou, N., Xiang, Z., Cui, W., Li, L. & Shen, W. Hydrogen sulfide acts downstream of methane to induce cucumber adventitious root development. J. Plant Physiol. 228, 113–120 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y., Li, K., Li, Y., Zhao, X. & Wang, L. MYB transcription factors as regulators of secondary metabolism in plants. Biology 9, 61 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francisco, R. M. et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. Plant Cell 25, 1840–1854 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prescott, A. G. & John, P. Dioxygenases: Molecular structure and role in plant metabolism. Annual Rev. Plant Biol. 47, 245–271 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Poudel, P. R., Azuma, A., Kobayashi, S., Koyama, K. & Goto-Yamamoto, N. VvMYBAs induce expression of a series of anthocyanin biosynthetic pathway genes in red grapes (Vitis vinifera L.). Scientia Horticulturae. 283, 110121 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Petroni, K. & Tonelli, C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 181, 219–229 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riechmann, J. L. et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science. 290, 2105–2110 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramya, M. et al. Floral scent: Regulation and role of MYB transcription factors. Phytochem. Lett. 19, 114–120 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Wang, F., Jin, C., Tong, Y. & Wang, T. A R2R3-MYB transcription factor VvMYBF1 from grapevine (Vitis vinifera L.) regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis. J. Hortic. Sci. Biotechnol. 95, 147–161 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. & Liu, Q. Z. Genome-wide characterization of the WRKY gene family in cultivated strawberry (Fragaria × ananassa Duch.) and the importance of several group III members in continuous cropping. Sci. Rep. 9, 8423 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S., Zhou, X., Chen, L., Huang, W. & Yu, D. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells 29, 475–483 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chanwala, J. et al. Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC genomics 21, 1–16 (2020).

    Article 

    Google Scholar
     

  • Banerjee, A. & Roychoudhury, A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses. Sci. World J. 2015, 807560 (2015).

    Article 

    Google Scholar
     

  • Wang, P. et al. Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Front. Plant Sci. 9, 64 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, B. et al. A Novel bHLH transcription factor PtrbHLH66 from trifoliate orange positively regulates plant drought tolerance by mediating root growth and ROS scavenging. Int. J. Mol. Sci. 23, 15053 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hichri, I. et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. plant. 3, 509–523 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis). BMC Plant Biol. 21, 1–22 (2021).

    Article 

    Google Scholar
     

  • Liu, H. et al. Genome-wide analysis of the lateral organ boundaries domain (LBD) gene family in Solanum tuberosum. Int. J. Mol. Sci. 20, 5360 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou, X. et al. The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening: A review. Plant Mol. Biol. 106, 223–238 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DInca, E. et al. Initiation of organ maturation and fruit ripening in grapevine is controlled by the CARPO-NAC transcription factor. bioRxiv, 468481 (2021).

  • Licausi, F., Ohme-Takagi, M. & Perata, P. APETALA 2/ethylene responsive factor (AP 2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytol. 199, 639–649 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Y. et al. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J. Exp. Botany 64, 2499–2510 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chervin, C. et al. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 167, 1301–1305 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum Tataricum). BMC Plant Biol. 19, 84 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Y. et al. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytologist. 213, 1667–1681 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samad, A. F. et al. MicroRNA and transcription factor: key players in plant regulatory network. Front. Plant Sci. 8, 565 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease. Front. Plant Sci. 8, 526 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Identification of grape miRNA revealed Vvi-miR164b involved in auxin induced root development. Scientia Horticulturae. 295, 110804 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sun, X. et al. Characterization of the regulation mechanism of grapevine microRNA172 family members during flower development. BMC Plant Biol. 20, 1–12 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Alonso-Peral, M. M. et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 154, 757–771 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanchiswamy, C. N. et al. Differential expression of CPKs and cytosolic Ca2+ variation in resistant and susceptible apple cultivars (Malus x domestica) in response to the pathogen Erwinia amylovora and mechanical wounding. BMC Genom. 14, 1–14 (2013).

    Article 

    Google Scholar
     

  • Xiaolin, Z., Baoqiang, W., Xian, W. & Xiaohong, W. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa. BMC Genom. 23, 1–18 (2022).

    Article 

    Google Scholar
     

  • Tripathi, V., Parasuraman, B., Laxmi, A. & Chattopadhyay, D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58, 778–790 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuellar, T. et al. A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1–protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J. 61, 58–69 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, J. & Maiti, M. K. Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem. Biophys. Res. Commun. 394, 178–183 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H.-J. et al. FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun. 5, 5473 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Z., Cheng, B., Zeng, W., Liu, Z. & Peng, Y. The transcriptional and post-transcriptional regulation in perennial creeping bentgrass in response to γ-aminobutyric acid (GABA) and heat stress. Environ. Exp. Bot. 162, 515–524 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Penarrubia, L., Andres-Colas, N., Moreno, J. & Puig, S. Regulation of copper transport in Arabidopsis thaliana: A biochemical oscillator?. JBIC J. Biol. Inorg. Chem. 15, 29–36 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, B. E., Nevitt, T. & Thiele, D. J. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 4, 176–185 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Berghe, P. V. & Klomp, L. W. Posttranslational regulation of copper transporters. JBIC J. Biolog. Inorg. Chem. 15, 37–46 (2010).

    Article 

    Google Scholar
     

  • Martins, V., Hanana, M., Blumwald, E. & Geros, H. Copper transport and compartmentation in grape cells. Plant Cell Physiol. 53, 1866–1880 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sweetman, C., Deluc, L. G., Cramer, G. R., Ford, C. M. & Soole, K. L. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry. 70, 1329–1344 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar