Search
Close this search box.

Towards realizing nano-enabled precision delivery in plants – Nature Nanotechnology

  • van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mbow, C. et al. Food security. In: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) 437–550 (Cambridge Univ. Press, 2022).

  • Borrelli, P. et al. Policy implications of multiple concurrent soil erosion processes in European farmland. Nat. Sustain. 6, 103–112 (2022).

    Article 

    Google Scholar
     

  • Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Servin, A. D. & White, J. C. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1, 9–12 (2016).

    Article 

    Google Scholar
     

  • Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Surface coated sulfur nanoparticles suppress Fusarium disease in field grown tomato: increased yield and nutrient biofortification. J. Agric. Food Chem. 70, 14377–14385 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, C. et al. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. Sci. Total Environ. 905, 167799 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santana, I. et al. Targeted carbon nanostructures for chemical and gene delivery to plant chloroplasts. ACS Nano 16, 12156–12173 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Law, S. S. Y. et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 13, 2417 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ristroph, K. et al. Flash nanoprecipitation as an agrochemical nanocarrier formulation platform: phloem uptake and translocation after foliar administration. ACS Agric. Sci. Technol. 3, 987–995 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, S.-J. et al. Targeted delivery of sucrose-coated nanocarriers with chemical cargoes to the plant vasculature enhances long-distance translocation. Small 20, e2304588 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M., Al-Jamal, K. T., Kostarelos, K. & Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4, 6303–6317 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Santana, I. et al. Targeted delivery of plasmid DNA to chloroplasts by nanomaterials. In Vitro Cell. Dev. Biol. Anim. 58, S14–S14 (2022).


    Google Scholar
     

  • Thagun, C., Chuah, J.-A. & Numata, K. Targeted gene delivery into various plastids mediated by clustered cell-penetrating and chloroplast-targeting peptides. Adv. Sci. 6, 1902064 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Star polymer size, charge content, and hydrophobicity affect their leaf uptake and translocation in plants. Environ. Sci. Technol. 55, 10758–10768 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spielman-Sun, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spielman-Sun, E. et al. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ. Sci. Nano 6, 2508–2519 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Phloem delivery of fludioxonil by plant amino acid transporter-mediated polysuccinimide nanocarriers for controlling Fusarium wilt in banana. J. Agric. Food Chem. 69, 2668–2678 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J., Li, S., Du, M., Song, Z. & Han, H. Nuclear delivery of exogenous gene in mature plants using nuclear location signal and cell-penetrating peptide nanocomplex. ACS Appl. Nano Mater. 6, 160–170 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Thagun, C. et al. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano 16, 3506–3521 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, C., Chandrasekaran, A., Jha, A. & Ramprasad, R. Active-learning and materials design: the example of high glass transition temperature polymers. MRS Commun. 9, 860–866 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shmilovich, K. et al. Discovery of self-assembling π-conjugated peptides by active learning-directed coarse-grained molecular simulation. J. Phys. Chem. B 124, 3873–3891 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bevers, S. et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brochu, E., Cora, V. M. & de Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Preprint at https://arxiv.org/abs/1012.2599 (2010).

  • Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, M. et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 7, 11271–11280 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10, 257–278 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avital, A. et al. Foliar delivery of siRNA particles for treating viral infections in agricultural grapevines. Adv. Funct. Mater. 31, 2101003 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, F.-P. et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J. Mater. Chem. B 1, 5279 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Charge, aspect ratio, and plant species affect uptake efficiency and translocation of polymeric agrochemical nanocarriers. Environ. Sci. Technol. 57, 8269–8279 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L., Chen, H., Xie, J., Becton, M. & Wang, X. Interplay of nanoparticle rigidity and its translocation ability through cell membrane. J. Phys. Chem. B 123, 8923–8930 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 11, 1105–1111 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, R. G. et al. Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plants 8, 535–548 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, C. et al. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nat. Nanotechnol. 15, 1033–1042 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chariou, P. L. & Steinmetz, N. F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11, 4719–4730 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santa Cruz, S. Perspective: phloem transport of viruses and macromolecules—what goes in must come out. Trends Microbiol. 7, 237–241 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caparco, A. A., González-Gamboa, I., Hays, S. S., Pokorski, J. K. & Steinmetz, N. F. Delivery of nematicides using TMGMV-derived spherical nanoparticles. Nano Lett. 23, 5785–5793 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chariou, P. L. et al. Soil mobility of synthetic and virus-based model nanopesticides. Nat. Nanotechnol. 14, 712–718 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl. Mater. Interfaces 7, 9546–9553 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali, Z. et al. DNA–carbon nanotube binding mode determines the efficiency of carbon nanotube-mediated DNA delivery to intact plants. ACS Appl. Nano Mater. 5, 4663–4676 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, T. et al. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core–shell nanostructures. ACS Nano 16, 6034–6048 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Star polymers with designed reactive oxygen species scavenging and agent delivery functionality promote plant stress tolerance. ACS Nano 16, 4467–4478 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng, K. K. et al. Intracellular delivery of proteins via fusion peptides in intact plants. PLoS ONE 11, e0154081 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tör, M., Lotze, M. T. & Holton, N. Receptor-mediated signalling in plants: molecular patterns and programmes. J. Exp. Bot. 60, 3645–3654 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K. et al. Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environ. Sci. Nano 9, 2691–2703 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popescu, M. & Ungureanu, C. Biosensors in food and healthcare industries: bio-coatings based on biogenic nanoparticles and biopolymers. Coat. World 13, 486 (2023).

    CAS 

    Google Scholar
     

  • González-Gamboa, I., Manrique, P., Sánchez, F. & Ponz, F. Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity. J. Biotechnol. 254, 17–24 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Song, E.-Q. et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5, 761–770 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article 

    Google Scholar
     

  • Zhang, N. et al. Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun. 40, e1900096 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nemiwal, M., Zhang, T. C. & Kumar, D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb. Technol. 156, 110006 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mozafari, M. R. M. Nano-immunoengineering: opportunities and challenges. Curr. Opin. Biomed. Eng. 10, 51–59 (2019).

    Article 

    Google Scholar
     

  • Wu, Z. et al. One-step supramolecular multifunctional coating on plant virus nanoparticles for bioimaging and therapeutic applications. ACS Appl. Mater. Interfaces 14, 13692–13702 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caparco, A. A., Dautel, D. R. & Champion, J. A. Protein mediated enzyme immobilization. Small 18, e2106425 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Mitochondria-targeted nanomedicine for enhanced efficacy of cancer therapy. Front. Bioeng. Biotechnol. 9, 720508 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feger, G., Angelov, B. & Angelova, A. Prediction of amphiphilic cell-penetrating peptide building blocks from protein-derived amino acid sequences for engineering of drug delivery nanoassemblies. J. Phys. Chem. B 124, 4069–4078 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, L., Maier, K. E., Yan, A. & Levy, M. A comparative analysis of cell surface targeting aptamers. Nat. Commun. 12, 6275 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Care, A., Bergquist, P. L. & Sunna, A. Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol. 33, 259–268 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baneyx, F. & Schwartz, D. T. Selection and analysis of solid-binding peptides. Curr. Opin. Biotechnol. 18, 312–317 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltomaa, R., Benito-Peña, E., Barderas, R. & Moreno-Bondi, M. C. Phage display in the quest for new selective recognition elements for biosensors. ACS Omega 4, 11569–11580 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teymennet-Ramírez, K. V., Martínez-Morales, F. & Trejo-Hernández, M. R. Yeast surface display system: strategies for improvement and biotechnological applications. Front. Bioeng. Biotechnol. 9, 794742 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niebling, S. et al. FoldAffinity: binding affinities from nDSF experiments. Sci Rep. 11, 9572 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashrafizadeh, M. et al. Nanoparticles targeting STATs in cancer therapy. Cells 8, 1158 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juang, V., Chang, C.-H., Wang, C.-S., Wang, H.-E. & Lo, Y.-L. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 15, e1903296 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hasim, S. & Coleman, J. J. Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med. Chem. 11, 869–883 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, J. et al. Targeted drug delivery in plants: enzyme-responsive lignin nanocarriers for the curative treatment of the worldwide grapevine trunk disease Esca. Adv. Sci. 6, 1802315 (2019).

    Article 

    Google Scholar
     

  • Sondhi, P., Maruf, M. H. U. & Stine, K. J. Nanomaterials for biosensing lipopolysaccharide. Biosensors 10, 2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angsantikul, P. et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv. Ther. 1, 1800016 (2018).

    Article 

    Google Scholar
     

  • Vega-Vásquez, P., Mosier, N. S. & Irudayaraj, J. Nanoscale drug delivery systems: from medicine to agriculture. Front. Bioeng. Biotechnol. 8, 79 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, A. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr. Opin. Virol. 48, 10–16 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solovyev, A. G. et al. Distinct mechanisms of endomembrane reorganization determine dissimilar transport pathways in plant RNA viruses. Plants 11, 2403 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W. et al. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv. Drug Deliv. Rev. 192, 114635 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borgatta, J. et al. Influence of CuO nanoparticle aspect ratio and surface charge on disease suppression in tomato (Solanum lycopersicum). J. Agric. Food Chem. 71, 9644–9655 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spielman-Sun, E. et al. Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu(OH)2, and CuS nanoparticles. Environ. Sci. Technol. 52, 9777–9784 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ. Sci. Technol. 52, 2888–2897 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avellan, A. et al. Remote biodegradation of Ge–imogolite nanotubes controlled by the iron homeostasis of Pseudomonas brassicacearum. Environ. Sci. Technol. 50, 7791–7798 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McManus, P. et al. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on copper bioavailability and uptake. Environ. Toxicol. Chem. 37, 2619–2632 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes. Ann. Bot. 123, 57–68 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prakash, S. & Deswal, R. Analysis of temporally evolved nanoparticle–protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. Plant Physiol. Biochem. 146, 143–156 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borgatta, J. R. et al. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci. Nano 8, 1067–1080 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Grieves, M. & Vickers, J. in Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches (eds Kahlen, F.-J. et al.) 85–113 (Springer, 2017).

  • Semeraro, C., Lezoche, M., Panetto, H. & Dassisti, M. Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021).

    Article 

    Google Scholar
     

  • Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Votta, E. et al. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yeats, T. H. & Rose, J. K. C. The formation and function of plant cuticles. Plant Physiol. 163, 5–20 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hedrich, R. Ion channels in plants. Physiol. Rev. 92, 1777–1811 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann, U. et al. Xylem water transport—is the available evidence consistent with the cohesion theory. Plant Cell. Environ. 17, 1169–1181 (1994).

    Article 

    Google Scholar
     

  • De Schepper, V., De Swaef, T., Bauweraerts, I. & Steppe, K. Phloem transport: a review of mechanisms and controls. J. Exp. Bot. 64, 4839–4850 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Frenkel, D. & Smit, B. in Understanding Molecular Simulation 2nd edn (eds Frenkel, D. & Smit, B.) 63–107 (Academic Press, 2002).

  • Lemkul, J. A., Huang, J., Roux, B. & MacKerell, A. D. Jr An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem. Rev. 116, 4983–5013 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marrink, S. J. & Tieleman, D. P. Perspective on the MARTINI model. Chem. Soc. Rev. 42, 6801–6822 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marrink, S. J. et al. Computational modeling of realistic cell membranes. Chem. Rev. 119, 6184–6226 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murtola, T., Bunker, A., Vattulainen, I., Deserno, M. & Karttunen, M. Multiscale modeling of emergent materials: biological and soft matter. Phys. Chem. Chem. Phys. 11, 1869–1892 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cosgrove, D. J. Building an extensible cell wall. Plant Physiol. 189, 1246–1277 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth-Nebelsick, A., Hassiotou, F. & Veneklaas, E. J. Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiol. 151, 2018–2027 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulte, P. J. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytol. 193, 721–729 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Koch, T., Heck, K., Schröder, N., Class, H. & Helmig, R. A new simulation framework for soil–root interaction, evaporation, root growth, and solute transport. Vadose Zone J. 17, 170210 (2018).

    Article 

    Google Scholar
     

  • Mai, T. H., Schnepf, A., Vereecken, H. & Vanderborght, J. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients. Plant Soil 439, 273–292 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Porter, T. K. et al. A theory of mechanical stress-induced H2O2 signaling waveforms in planta. J. Math. Biol. 86, 11 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Valli, A., Koponen, A., Vesala, T. & Timonen, J. Simulations of water flow through bordered pits of conifer xylem. J. Stat. Phys. 107, 121–142 (2002).

    Article 

    Google Scholar
     

  • Sheiner, L. B. & Steimer, J. L. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu. Rev. Pharmacol. Toxicol. 40, 67–95 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y., Dixit, V., Innes, M. J., Guo, X. & Rackauckas, C. A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions. In 2021 IEEE High Performance Extreme Computing Conference (HPEC) 1–9 (IEEE, 2021).

  • Wang, S., Ren, L., Liu, Y., Han, Z. & Yang, Y. Mechanical characteristics of typical plant leaves. J. Bionic Eng. 7, 294–300 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Comtet, J., Jensen, K. H., Turgeon, R., Stroock, A. D. & Hosoi, A. E. Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip. Nat. Plants 3, 17032 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández, V., Guzmán-Delgado, P., Graça, J., Santos, S. & Gil, L. Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front. Plant Sci. 7, 427 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarpella, E. & Meijer, A. H. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164, 209–242 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlüter, U. & Weber, A. P. M. Regulation and evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 71, 183–215 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 

    Google Scholar
     

  • de Pablo, J. J. et al. New frontiers for the materials genome initiative. npj Comput. Mater. 5, 41 (2019).

    Article 

    Google Scholar
     

  • Joshi, A. et al. Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl. Nanosci. 8, 1399–1414 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Demirer, G. S. et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6, eaaz0495 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Gold-nanocluster-mediated delivery of siRNA to intact plant cells for efficient gene knockdown. Nano Lett. 21, 5859–5866 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chacón-Madrid, K., da Silva Francischini, D. & Arruda, M. A. Z. The role of silver nanoparticles effects in the homeostasis of metals in soybean cultivation through qualitative and quantitative laser ablation bioimaging. J. Trace Elem. Med. Biol. 79, 127207 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Koelmel, J., Leland, T., Wang, H., Amarasiriwardena, D. & Xing, B. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ. Pollut. 174, 222–228 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogel-Mikuš, K., Pongrac, P., Kump, P., Kodre, A. & Arčon, I. in X-Ray Fluorescence in Biological Sciences (eds Singh, V. K. et al.) Ch. 9, 151–162 (Wiley, 2022).

  • Stegemeier, J. P., Colman, B. P., Schwab, F., Wiesner, M. R. & Lowry, G. V. Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles. Environ. Sci. Technol. 51, 4936–4943 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat. Nanotechnol. 17, 197–205 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staedler, Y. M., Masson, D. & Schönenberger, J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS ONE 8, e75295 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avellan, A. et al. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nat. Nanotechnol. 13, 1072–1077 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. A., Peralta-Videa, J. R. & Gardea-Torresdey, J. L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 58, 3689–3693 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larue, C. et al. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater. 273, 17–26 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dan, Y. et al. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles. Anal. Bioanal. Chem. 408, 5157–5167 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, D., Oh, Z. G. & Chen, Z. Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front. Plant Sci. 7, 32 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller, A. A., Huang, Y. & Nelson, J. Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J. Nanopart. Res. 20, 1–13 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Montaño, M. D. et al. Exploring nanogeochemical environments: new insights from single particle ICP-TOFMS and AF4-ICPMS. ACS Earth Space Chem. 6, 943–952 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, M. et al. Regulatory mechanisms of phytotoxicity and corona formation on sprouts by differently charged and sized polystyrene micro/nano-plastics. Environ. Sci. Nano 10, 1244–1256 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, S.-D., Cho, Y.-H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kieran, P. M., MacLoughlin, P. F. & Malone, D. M. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanks, J. V. & Morgan, J. Plant ‘hairy root’ culture. Curr. Opin. Biotechnol. 10, 151–155 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ron, M. et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455–469 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moscatiello, R., Baldan, B. & Navazio, L. Plant cell suspension cultures. Methods Mol. Biol. 953, 77–93 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, X.-M., Lin, C. & Fugetsu, B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon N. Y. 47, 3479–3487 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lin, C., Fugetsu, B., Su, Y. & Watari, F. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170, 578–583 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, A. R. et al. The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J. Nanobiotechnol. 8, 24 (2010).

    Article 

    Google Scholar
     

  • Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E. & Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6, 2128–2135 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spanò, L., Mariotti, D., Pezzotti, M., Damiani, F. & Arcioni, S. Hairy root transformation in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 73, 523–530 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Mohebodini, M., Fathi, R. & Mehri, N. Optimization of hairy root induction in chicory (Cichorium intybus L.) and effects of nanoparticles on secondary metabolites accumulation. Iran. J. Genet. Plant Breed. 6, 60–68 (2017).


    Google Scholar
     

  • Chung, I.-M., Rekha, K., Rajakumar, G. & Thiruvengadam, M. Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles. Plant Cell Tissue Organ Cult. 134, 95–106 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chung, I.-M., Rajakumar, G. & Thiruvengadam, M. Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol. Hung. 69, 97–109 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, S.-J. et al. Electrostatics control nanoparticle interactions with model and native cell walls of plants and algae. Environ. Sci. Technol. 57, 19663–19677 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, G., Tang, M., Zhao, J. & Zhu, X. Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res. 11, 6 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J. Biol. Eng. 14, 1 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. Currently available strategies for target identification of bioactive natural products. Front. Chem 9, 761609 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, B. A. P., Thornburg, C. C., Henrich, C. J., Grkovic, T. & O’Keefe, B. R. Creating and screening natural product libraries. Nat. Prod. Rep. 37, 893–918 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruff, K. M. & Pappu, R. V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gropp, R. E. NSF: time for big ideas. Bioscience 66, 920–920 (2016).

    Article 

    Google Scholar
     

  • Simon, D. & Schiemer, F. Crossing boundaries: complex systems, transdisciplinarity and applied impact agendas. Curr. Opin. Environ. Sustain. 12, 6–11 (2015).

    Article 

    Google Scholar
     

  • Newell, W. H. & Klein, J. T. Interdisciplinary studies into the 21st century. J. Gen. Educ. 45, 152–169 (1996).


    Google Scholar
     

  • Stokols, D., Hall, K. L., Taylor, B. K. & Moser, R. P. The science of team science: overview of the field and introduction to the supplement. Am. J. Prev. Med. 35, S77–S89 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bammer, G. Integration and implementation sciences. In Complex Science for a Complex World (eds Perez, P. & Batten, D.) 95–108 (ANU Press, 2006).

  • Pohl, C., Truffer, B. & Hirsch-Hadorn, G. Addressing wicked problems through transdisciplinary research. In The Oxford Handbook of Interdisciplinarity 2nd edn (ed. Frodeman, R.) 319–331 (Oxford Univ. Press, 2017).

  • Alhaddi, H. et al. Triple bottom line and sustainability: a literature review. Bus. Manage. Stud. 1, 6–10 (2015).

    Article 

    Google Scholar
     

  • Grieger, K. et al. Fostering responsible innovation through stakeholder engagement: case study of North Carolina sweetpotato stakeholders. Sustain. Sci. Pract. Policy 14, 2274 (2022).


    Google Scholar
     

  • Tait, J. Upstream engagement and the governance of science. The shadow of the genetically modified crops experience in Europe. EMBO Rep. 10 (Suppl. 1), S18–S22 (2009).

  • Merck, A. W., Grieger, K. D. & Kuzma, J. How can we promote the responsible innovation of nano-agrifood research? Environ. Sci. Policy 137, 185–190 (2022).

    Article 

    Google Scholar
     

  • National Nanotechnology Initiative Strategic Plan (NNI, 2021).

  • Grieger, K., Merck, A. & Kuzma, J. Formulating best practices for responsible innovation of nano-agrifoods through stakeholder insights and reflection. J, Responsib. Technol. 10, 100030 (2022).

    Article 

    Google Scholar
     

  • Park, K. Nanotechnology: what it can do for drug delivery. J. Control. Release 120, 1–3 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, S., de Matos, M. B. C., Metselaar, J. M. & Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, S., Wu, Y., Liu, Y. & Wu, D. High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 12, 4085–4109 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Yang, G., Jin, S., Xu, L. & Zhao, C.-X. Development of high-drug-loading nanoparticles. ChemPlusChem 85, 2143–2157 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercier, J. & Lindow, S. E. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66, 369–374 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dror, I., Yaron, B. & Berkowitz, B. Abiotic soil changes induced by engineered nanomaterials: a critical review. J. Contam. Hydrol. 181, 3–16 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grieger, K. D. et al. Responsible innovation of nano-agrifoods: insights and views from U.S. stakeholders. NanoImpact 24, 100365 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cummings, C. L., Kuzma, J., Kokotovich, A., Glas, D. & Grieger, K. Barriers to responsible innovation of nanotechnology applications in food and agriculture: a study of US experts and developers. NanoImpact 23, 100326 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuzma, J. & Grieger, K. Community-led governance for gene-edited crops. Science 370, 916–918 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, T. et al. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 8, 9537–9548 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wypij, M. et al. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: chances, challenges, and consumers’ perception. Front. Chem. 10, 1106230 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Accinelli, C. et al. Degradation of microplastic seed film-coating fragments in soil. Chemosphere 226, 645–650 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L., Cai, L., Sun, F., Li, G. & Che, Y. Public attitudes towards microplastics: perceptions, behaviors and policy implications. Resour. Conserv. Recycl. 163, 105096 (2020).

    Article 

    Google Scholar
     

  • Lian, J. et al. Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 318, 128571 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M. & Yousefi, H. Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. Fibers Polym. 16, 529–536 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yadav, M. et al. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess. 6, 1–20 (2019).

    Article 

    Google Scholar
     

  • Sharma, V., Tiwari, P. & Mobin, S. M. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 5, 8904–8924 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ðorđević, L., Arcudi, F., Cacioppo, M. & Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Goswami, P., Mathur, J. & Srivastava, N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon 8, e09908 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui, M. H. & Al-Whaibi, M. H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci. 21, 13–17 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Attarilar, S. et al. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front. Bioeng. Biotechnol. 8, 822 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. et al. Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16, e2000705 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pourzahedi, L. et al. Life cycle considerations of nano-enabled agrochemicals: are today’s tools up to the task? Environ. Sci. Nano 5, 1057–1069 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Peng, B. et al. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat. Plants 6, 338–348 (2020).

    Article 
    PubMed 

    Google Scholar