TMEM158, as plasma cfRNA marker, promotes proliferation and doxorubicin resistance in ovarian cancer

  • Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88.

    Article 
    PubMed 

    Google Scholar
     

  • Horackova K, Janatova M, Kleiblova P, Kleibl Z, Soukupova J. Early-onset ovarian cancer <30 years: what do we know about its genetic predisposition? Int J Mol Sci. 2023; 24:17020.

  • Ali AT, Al-Ani O, Al-Ani F. Epidemiology and risk factors for ovarian cancer. Prz Menopauzalny. 2023;22:93–104.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, et al. Hereditary ovarian cancer: not only BRCA 1 and 2 genes. Biomed Res Int. 2015;2015:341723.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahima M, Mahmood T, Ved A, Siddiqui MH, Ahsan F, Shamim A, et al. An in-depth analysis of ovarian cancer: pathogenesis and clinical manifestation. Drug Res (Stuttg). 2022;72:424–34.

    Article 
    PubMed 

    Google Scholar
     

  • Menon U, Griffin M, Gentry-Maharaj A. Ovarian cancer screening–current status, future directions. Gynecol Oncol. 2014;132:490–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rooth C. Ovarian cancer: risk factors, treatment and management. Br J Nurs. 2013;22:S23–30.

    Article 
    PubMed 

    Google Scholar
     

  • Lloyd KL, Cree IA, Savage RS. Prediction of resistance to chemotherapy in ovarian cancer: a systematic review. BMC Cancer. 2015;15:117.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rykova EY, Morozkin ES, Ponomaryova AA, Loseva EM, Zaporozhchenko IA, Cherdyntseva NV, et al. Cell-free and cell-bound circulating nucleic acid complexes: mechanisms of generation, concentration and content. Expert Opin Biol Ther. 2012;12:S141–153.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tzimagiorgis G, Michailidou EZ, Kritis A, Markopoulos AK, Kouidou S. Recovering circulating extracellular or cell-free RNA from bodily fluids. Cancer Epidemiol. 2011;35:580–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Souza MF, Kuasne H, Barros-Filho MC, Ciliao HL, Marchi FA, Fuganti PE, et al. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer. PLoS One. 2017;12:e0184094.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gezer U, Ozgur E, Cetinkaya M, Isin M, Dalay N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 2014;38:1076–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res. 2014;114:1569–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhahbi JM. Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev. 2014;17:86–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Player A, Abraham N, Burrell K, Bengone IO, Harris A, Nunez L, et al. Identification of candidate genes associated with triple negative breast cancer. Genes Cancer. 2017;8:659–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu J, Zhang X, Shen T, Ma C, Wu J, Kong H, et al. Epigenetic profiling of H3K4Me3 reveals herbal medicine jinfukang-induced epigenetic alteration is involved in anti-lung cancer activity. Evid Based Complement Alternat Med. 2016;2016:7276161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iglesias D, Fernandez-Peralta AM, Nejda N, Daimiel L, Azcoita MM, Oliart S, et al. RIS1, a gene with trinucleotide repeats, is a target in the mutator pathway of colorectal carcinogenesis. Cancer Genet Cytogenet. 2006;167:138–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva J, Silva JM, Barradas M, Garcia JM, Dominguez G, Garcia V, et al. Analysis of the candidate tumor suppressor Ris-1 in primary human breast carcinomas. Mutat Res. 2006;594:78–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Z, Guo J, Chen L, Luo N, Yang W, Qu X. Overexpression of TMEM158 contributes to ovarian carcinogenesis. J Exp Clin Cancer Res. 2015;34:75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayres LC, Cho MK. Cell-free fetal nucleic acid testing: a review of the technology and its applications. Obstet Gynecol Surv. 2011;66:431–42.

    Article 
    PubMed 

    Google Scholar
     

  • Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights. Mol Biol Rep. 2022;49:705–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drag MH, Kilpelainen TO. Cell-free DNA and RNA-measurement and applications in clinical diagnostics with focus on metabolic disorders. Physiol Genomics. 2021;53:33–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolenda T, Guglas K, Baranowski D, Sobocinska J, Kopczynska M, Teresiak A, et al. cfRNAs as biomarkers in oncology – still experimental or applied tool for personalized medicine already? Rep Pract Oncol Radiother. 2020;25:783–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport–an update. AAPS J. 2015;17:65–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Liu L, Chen Y, Du Y, Wang J, Liu J. Correlation between adenosine triphosphate (ATP)-binding cassette transporter G2 (ABCG2) and drug resistance of esophageal cancer and reversal of drug resistance by artesunate. Pathol Res Pract. 2018;214:1467–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang L, Zhang C, He H, Pan Z, Fan D, He Y, et al. Associations between ABCG2 gene polymorphisms and gefitinib toxicity in non-small cell lung cancer: a meta-analysis. Onco Targets Ther. 2018;11:665–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roh YG, Mun MH, Jeong MS, Kim WT, Lee SR, Chung JW, et al. Drug resistance of bladder cancer cells through activation of ABCG2 by FOXM1. BMB Rep. 2018;51:98–103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, et al. Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 2018;233:5458–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tandia M, Mhiri A, Paule B, Saffroy R, Cailliez V, Noe G, et al. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study. Cancer Chemother Pharmacol. 2017;79:759–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He X, Wang J, Wei W, Shi M, Xin B, Zhang T, et al. Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1alpha and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol Ther. 2016;17:188–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar