Search
Close this search box.

Therapeutic role of PTEN in tissue regeneration for management of neurological disorders: stem cell behaviors to an in-depth review – Cell Death & Disease

  • Bailey M, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, et al. PTEN: multiple functions in human malignant tumors. Front Oncol. 2015;5:24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Revandkar A, Perciato ML, Toso A, Alajati A, Chen J, Gerber H, et al. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat Commun. 2016;7:13719.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Straka B, Splitkova B, Vlckova M, Tesner P, Rezacova H, Krskova L, et al. Genetic testing in children enrolled in epilepsy surgery program. A real-life study. Eur J Paediatr Neurol. 2023;47:80–87.

    Article 
    PubMed 

    Google Scholar
     

  • Varga E, Pastore M, Prior T, Herman G, McBride K. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009;11:111–7.

    Article 
    PubMed 

    Google Scholar
     

  • Alva J, Lee G, Escobar E, Pyle AD. Phosphatase and tensin homolog regulates the pluripotent state and lineage fate choice in human embryonic stem cells. Stem Cells. 2011;29:1952–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang H, Fang W, Cao H, Luo S, Cong J, Liu S, et al. Di-(2-ethylhexyl)-phthalate induces apoptosis via the PPARγ/PTEN/AKT pathway in differentiated human embryonic stem cells. Food Chem Toxicol. 2019;131:110552.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi Y, Liu J, Chao J, Greer PA, Li S. PTEN dephosphorylates Abi1 to promote epithelial morphogenesis. J Cell Biol. 2020;219:e201910041.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Lu G, Su X, Tang C, Li H, Xiong Z, et al. Pten-mediated Gsk3β modulates the naïve pluripotency maintenance in embryonic stem cells. Cell Death Dis. 2020;11:107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Wang X, Liu J, Huang Z, Li C, Liu Y, et al. Embryonic stem cell microenvironment suppresses the malignancy of cutaneous melanoma cells by down-regulating PI3K/AKT pathway. Cancer Med. 2019;8:4265–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He K, Qu H, Xu L-N, Gao J, Cheng F-Y, Xiang P, et al. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells. Biosci Rep. 2016;36:e00378.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao J, Marumoto T, Yamaguchi S, Okano S, Takeda N, Sakamoto C, et al. Inhibition of PTEN tumor suppressor promotes the generation of induced pluripotent stem cells. Mol Ther. 2013;21:1242–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fojtík P, Beckerová D, Holomková K, Šenfluk M, Rotrekl V. Both hypoxia-inducible factor 1 and MAPK signaling pathway attenuate PI3K/AKT via suppression of reactive oxygen species in human pluripotent stem cells. Front Cell Dev Biol. 2021;8:607444.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Bernardini E, Campagnolo P, Margariti A, Zampetaki A, Karamariti E, Hu Y, et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways. J Biol Chem. 2014;289:3383–93.

    Article 
    PubMed 

    Google Scholar
     

  • Wong CW, Wang Y, Liu T, Li L, Cheung SKK, Or PM-Y, et al. Autism-associated PTEN missense mutation leads to enhanced nuclear localization and neurite outgrowth in an induced pluripotent stem cell line. FEBS J. 2020;287:4848–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin VJT, Hu J, Zolekar A, Yan L-J, Wang Y-C. Urine sample-derived cerebral organoids suitable for studying neurodevelopment and pharmacological responses. Front Cell Dev Biol. 2020;8:304.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee IH, Huang S-S, Chuang C-Y, Liao K-H, Chang L-H, Chuang C-C, et al. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke. Sci Rep. 2017;7:1943.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W-Y, Zhu Q-B, Jin L-Y, Yang Y, Xu X-Y, Hu X-Y. Exosomes derived from human induced pluripotent stem cell-derived neural progenitor cells protect neuronal function under ischemic conditions. Neural Regen Res. 2021;16:2064–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bond AM, Ming G-L, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17:385–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell. 2011;145:1142–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang SC, Jaini R, Hitomi M, Lee H, Sarn N, Thacker S, et al. Decreased nuclear Pten in neural stem cells contributes to deficits in neuronal maturation. Mol Autism. 2020;11:43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei X, Jiao J. UTX affects neural stem cell proliferation and differentiation through PTEN signaling. Stem Cell Rep. 2018;10:1193–207.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Cui Y, Yu Z, Wang W, Cheng X, Ji W, et al. Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell. 2019;25:754–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Liu Y, Luan Y, Zhu K, Hu B, Ma B, et al. Activation of type 4 metabotropic glutamate receptor regulates proliferation and neuronal differentiation in a cultured rat retinal progenitor cell through the suppression of the cAMP/PTEN/AKT pathway. Front Mol Neurosci. 2020;13:141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, et al. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun. 2015;6:10068.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choorapoikayil S, Kers R, Herbomel P, Kissa K, den Hertog J. Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish. Blood. 2014;123:184–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porter SN, Cluster AS, Signer RAJ, Voigtmann J, Monlish DA, Schuettpelz LG, et al. Pten cell autonomously modulates the hematopoietic stem cell response to inflammatory cytokines. Stem Cell Rep. 2016;6:806–14.

    Article 
    CAS 

    Google Scholar
     

  • Yilmaz OH, Kiel MJ, Morrison SJ. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood. 2006;107:924–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Han F, Wu J, Lee S-W, Chan C-H, Wu C-Y, et al. The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood. 2011;118:5429–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441:518–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rautenberg C, Germing U, Haas R, Kobbe G, Schroeder T. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: prevention, detection, and treatment. Int J Mol Sci. 2019;20:228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N-methyladenosine (mA)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo W, Lasky JL, Chang C-J, Mosessian S, Lewis X, Xiao Y, et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature. 2008;453:529–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry JM, Tao F, Roy A, Lin T, He XC, Chen S, et al. Overcoming Wnt-β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat Cell Biol. 2020;22:689–700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano. 2019;13:10015–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via microRNA-152-3p. Mol Ther Nucleic Acids. 2020;19:814–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11:259.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuda S, Nakagawa Y, Kitagishi Y, Nakanishi A, Murai T. Reactive oxygen species, superoxide dimutases, and PTEN-p53-AKT-MDM2 signaling loop network in mesenchymal stem/stromal cells regulation. Cells. 2018;7:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y-X, Zhu D-Y, Gao J, Xu Z-L, Tao S-C, Yin W-J, et al. Diminished membrane recruitment of Akt is instrumental in alcohol-associated osteopenia via the PTEN/Akt/GSK-3β/β-catenin axis. FEBS J. 2019;286:1101–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen WC, Lai YC, Li LH, Liao K, Lai HC, Kao SY, et al. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun. 2019;10:2226.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song B-Q, Chi Y, Li X, Du W-J, Han Z-B, Tian J-J, et al. Inhibition of notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR Pathway. Cell Physiol Biochem. 2015;36:1991–2002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashja-Arvan M, Dehbashi M, Eslami A, Salehi H, Yoosefi M, Ganjalikhani-Hakemi M. Impact of IFN-β and LIF overexpression on human adipose-derived stem cells properties. J Cell Physiol. 2020;235:8736–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S-C, Bamodu OA, Kuo K-T, Fong I-H, Lin C-C, Yeh C-T, et al. Adipose-derived stem cell induced-tissue repair or wound healing is mediated by the concomitant upregulation of miR-21 and miR-29b expression and activation of the AKT signaling pathway. Arch Biochem Biophys. 2021;705:108895.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai TC, Lee TL, Chang YC, Chen YC, Lin SR, Lin SW, et al. MicroRNA-221/222 mediates ADSC-exosome-induced cardioprotection against ischemia/reperfusion by targeting PUMA and ETS-1. Front Cell Dev Biol. 2020;8:569150.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An Y, Zhao J, Nie F, Qin Z, Xue H, Wang G, et al. Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 promote vascularization of endothelial cells. Sci Rep. 2019;9:12861.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Yuan L, Zhang Y, Si Y, Wang X, Lv T, et al. miR-221/222 promote endothelial differentiation of adipose-derived stem cells by regulation of PTEN/PI3K/AKT/mTOR pathway. Appl Biochem Biotechnol. 2023;197:4196–214.

    Article 

    Google Scholar
     

  • Liu J, Zhu P, Song P, Xiong W, Chen H, Peng W, et al. Pretreatment of adipose derived stem cells with curcumin facilitates myocardial recovery via antiapoptosis and angiogenesis. Stem Cells Int. 2015;2015:638153.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ming Y, Liu Z-P. Overexpression of lncRNA-NEF regulates the miR-155/PTEN axis to inhibit adipogenesis and promote osteogenesis. Kaohsiung J Med Sci. 2021;37:930–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin Y, Zhou C, Wang N, Yang H, Gao W-Q. Conversion of adipose tissue-derived mesenchymal stem cells to neural stem cell-like cells by a single transcription factor, Sox2. Cell Reprogram. 2015;17:221–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Liu F, Lv Y, Sun K, Zhao Y, Reilly J, et al. Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic Acids Res. 2021;49:2027–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tachibana N, Cantrup R, Dixit R, Touahri Y, Kaushik G, Zinyk D, et al. Pten regulates retinal amacrine cell number by modulating Akt, Tgfβ, and Erk signaling. J Neurosci. 2016;36:9454–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo HS, Kang KH, Joe CO, Kim JW. Pten coordinates retinal neurogenesis by regulating Notch signalling. EMBO J. 2012;31:817–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, et al. mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development (Camb, Engl). 2016;143:1859–73.

    CAS 

    Google Scholar
     

  • Sakagami K, Chen B, Nusinowitz S, Wu H, Yang X-J. PTEN regulates retinal interneuron morphogenesis and synaptic layer formation. Mol Cell Neurosci. 2012;49:171–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng TK, Yung JSY, Choy KW, Cao D, Leung CKS, Cheung HS, et al. Transdifferentiation of periodontal ligament-derived stem cells into retinal ganglion-like cells and its microRNA signature. Sci Rep. 2015;5:16429.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J, Li P, Zhou Y, Ye J. Altered energy metabolism during early optic nerve crush injury: implications of Warburg-like aerobic glycolysis in facilitating retinal ganglion cell survival. Neurosci Bull. 2020;36:761–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shabanzadeh A, D’Onofrio P, Magharious M, Choi K, Monnier P, Koeberle P. Modifying PTEN recruitment promotes neuron survival, regeneration, and functional recovery after CNS injury. Cell Death Dis. 2019;10:567.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutilla E, Steward O. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control? Neural Regener Res. 2016;11:1201–3.

    Article 
    CAS 

    Google Scholar
     

  • Cai B, Zheng Y, Yan J, Wang J, Liu X, Yin G. BMP2-mediated PTEN enhancement promotes differentiation of hair follicle stem cells by inducing autophagy. Exp Cell Res. 2019;385:111647.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Wang X, Chen Y, Han J, Kong D, Zhu M, et al. Pten loss in Lgr5 hair follicle stem cells promotes SCC development. Theranostics. 2019;9:8321–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff TL, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karmakar S, Deng L, He XC, Li L. Intestinal epithelial regeneration: active versus reserve stem cells and plasticity mechanisms. Am J Physiol Gastrointest Liver Physiol. 2020;318:G796–802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet. 2007;39:189–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richmond CA, Shah MS, Deary LT, Trotier DC, Thomas H, Ambruzs DM, et al. Dormant intestinal stem cells are regulated by PTEN and nutritional status. Cell Rep. 2015;13:2403–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strilbytska OM, Semaniuk UV, Storey KB, Yurkevych IS, Lushchak O. Insulin signaling in intestinal stem and progenitor cells as an important determinant of physiological and metabolic traits in Drosophila. Cells. 2020;9:803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Shao H, Zhang D, Dong J, Cheng W, Wang L, et al. PTEN signaling is required for the maintenance of spermatogonial stem cells in mouse, by regulating the expressions of PLZF and UTF1. Cell Biosci. 2015;5:42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goertz MJ, Wu Z, Gallardo TD, Hamra FK, Castrillon DH. Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Investig. 2011;121:3456–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuijk EW, van Mil A, Brinkhof B, Penning LC, Colenbrander B, Roelen BAJ. PTEN and TRP53 independently suppress Nanog expression in spermatogonial stem cells. Stem Cells Dev. 2010;19:979–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H, Thacker S, Sarn N, Dutta R, Eng C. Constitutional mislocalization of Pten drives precocious maturation in oligodendrocytes and aberrant myelination in model of autism spectrum disorder. Transl Psychiatry. 2019;9:13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiri A, Cho W, Zhou J, Birnbaum S, Sinton C, McKay R, et al. Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci. 2012;32:5880–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Huang W-C, Séjourné J, Clipperton-Allen AE, Page DT. Pten mutations alter brain growth trajectory and allocation of cell types through elevated β-catenin signaling. J Neurosci. 2015;35:10252–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha S, Park H, Mahmood U, Ra JC, Suh Y-H, Chang K-A. Human adipose-derived stem cells ameliorate repetitive behavior, social deficit and anxiety in a VPA-induced autism mouse model. Behav Brain Res. 2017;317:479–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, Ramouz A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J Emerg Med. 2017;8:34–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung JS, Wang X, Zhe Sun P. Magnetic resonance characterization of ischemic tissue metabolism. Open Neuroimag J. 2011;5:66–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Xu J, Liu Y, You Y, Xie L, Tong S, et al. Neutrophil-biomimetic “nanobuffer” for remodeling the microenvironment in the infarct core and protecting neurons in the penumbra via neutralization of detrimental factors to treat ischemic stroke. ACS Appl Mater Interfaces. 2022;14:27743–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan Q, Liu Y, Wang G, Wen Z, Wang Y. MTMR14 protects against cerebral stroke through suppressing PTEN-regulated autophagy. Biochem Biophys Res Commun. 2020;529:1045–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun F, Mao X, Xie L, Ding M, Shao B, Jin K. Notch1 signaling modulates neuronal progenitor activity in the subventricular zone in response to aging and focal ischemia. Aging Cell. 2013;12:978–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sha R, Han X, Zheng C, Peng J, Wang L, Chen L, et al. The effects of electroacupuncture in a rat model of cerebral ischemia-reperfusion injury following middle cerebral artery occlusion involves microRNA-223 and the PTEN signaling pathway. Med Sci Monit. 2019;25:10077–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santra M, Chopp M, Santra S, Nallani A, Vyas S, Zhang ZG, et al. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J Neurochem. 2016;136:118–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, et al. Microenvironment imbalance of spinal cord injury. Cell Transplant. 2018;27:853–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zukor K, Belin S, Wang C, Keelan N, Wang X, He Z. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci. 2013;33:15350–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du K, Zheng S, Zhang Q, Li S, Gao X, Wang J, et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J Neurosci. 2015;35:9754–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poplawski GHD, Kawaguchi R, Van Niekerk E, Lu P, Mehta N, Canete P, et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature. 2020;581:77–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu T, Peng W, Liang Y, Li M, Li D-S, Du K-H, et al. PTEN-silencing combined with ChABC-overexpression in adipose-derived stem cells promotes functional recovery of spinal cord injury in rats. Biochem Biophys Res Commun. 2020;532:420–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jolly AE, Scott GT, Sharp DJ, Hampshire AH. Distinct patterns of structural damage underlie working memory and reasoning deficits after traumatic brain injury. Brain. 2020;143:1158–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao Z, Liu Y, Chen B, Miao Z, Tu Y, Li C, et al. Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury. Nat Commun. 2021;12:4220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin C, Li N, Chang H, Shen Y, Li Z, Wei W, et al. Dual effects of thyroid hormone on neurons and neurogenesis in traumatic brain injury. Cell Death Dis. 2020;11:671.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Li F, Liu L, Xu X, Zhang B, Wu Y, et al. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Exp Neurol. 2018;307:99–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X, et al. Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature. 2020;578:273–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarraf SA, Sideris DP, Giagtzoglou N, Ni L, Kankel MW, Sen A, et al. PINK1/Parkin influences cell cycle by sequestering TBK1 at damaged mitochondria, inhibiting mitosis. Cell Rep. 2019;29:225–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi I, Choi D-J, Yang H, Woo JH, Chang M-Y, Kim JY, et al. PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes. Mol Brain. 2016;9:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem Sci. 2021;46:329–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soutar MPM, Kempthorne L, Miyakawa S, Annuario E, Melandri D, Harley J, et al. AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Sci Rep. 2018;8:8855.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22:401–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL Jr., Darley-Usmar V, et al. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease. Acta Pharm Sin B. 2022;12:511–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H-H, Lin S-L, Huang C-N, Lu F-J, Chiu P-Y, Huang W-N, et al. miR-302 attenuates amyloid-β-induced neurotoxicity through activation of Akt signaling. J Alzheimer’s Dis. 2016;50:1083–98.

    Article 
    CAS 

    Google Scholar
     

  • Gonzales KAU, Polak L, Matos I, Tierney MT, Gola A, Wong E, et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science (New York, NY). 2021;374:eabh2444.

    Article 
    CAS 

    Google Scholar
     

  • Latest Intelligence