Therapeutic potential of melatonin-pretreated human dental pulp stem cells (hDPSCs) in an animal model of spinal cord injury

  • Silva, N. A., Sousa, N., Reis, R. L. & Salgado, A. J. From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol. 114, 25–57 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, S., Shi, Z., Cao, F., Li, J. & Feng, S. Epidemiological features of spinal cord injury in China: a systematic review. Front. Neurol. 9, 683 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Spinal cord regeneration using dental stem cell-based therapies. Acta Neurobiol. Exp. 79(4), 319–327 (2019).


    Google Scholar
     

  • Scholpa, N. E. & Schnellmann, R. G. Mitochondrial-based therapeutics for the treatment of spinal cord injury: mitochondrial biogenesis as a potential pharmacological target. J. Pharmacol. Exp. Ther. 363(3), 303–313 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, A., Sakai, K., Matsubara, K., Kano, F. & Ueda, M. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci. Res. 78, 16–20 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Z.-B. et al. Platelet rich plasma enhanced neuro-regeneration of human dental pulp stem cells in vitro and in rat spinal cord. Ann. Transl. Med. 10(10) (2022).

  • Dalamagkas, K., Tsintou, M., Seifalian, A. & Seifalian, A. M. Translational regenerative therapies for chronic spinal cord injury. Int. J. Mol. Sci. 19(6), 1776 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gazdic, M. et al. Stem cells therapy for spinal cord injury. Int. J. Mol. Sci. 19(4), 1039 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, A., Tu, S., Lu, J. & Zhang, J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res. Ther. 10(1), 1–13 (2019).

    Article 

    Google Scholar
     

  • Yamazaki, K., Kawabori, M., Seki, T. & Houkin, K. Clinical trials of stem cell treatment for spinal cord injury. Int. J. Mol. Sci. 21(11), 3994 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, L. et al. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. (2020).

  • Huang, L., Fu, C., Xiong, F., He, C. & Wei, Q. Stem cell therapy for spinal cord injury. Cell Transplant. 30, 0963689721989266 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Peripheral nerve regeneration using different germ layer-derived adult stem cells in the past decade. Behav. Neurol. (2021).

  • Volarevic, V. et al. Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci. 15(1), 36 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liau, L. L. et al. Treatment of spinal cord injury with mesenchymal stem cells. Cell. Biosci. 10(1), 1–17 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. 97(25), 13625–13630 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karamzadeh, R. & Eslaminejad, M. B. Dental-Related Stem Cells and Their Potential in Regenerative Medicine (IntechOpen, 2013).

  • Ezquer, F. E., Ezquer, M. E., Vicencio, J. M. & Calligaris, S. D. Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: increasing transplanted cell resistance and increasing tissue receptivity. Cell Adhes. Migr. 11(1), 110–119 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liao, N. et al. Antioxidant preconditioning improves therapeutic outcomes of adipose tissue-derived mesenchymal stem cells through enhancing intrahepatic engraftment efficiency in a mouse liver fibrosis model. Stem Cell Res. Ther. 11(1), 1–11 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Zhou, L. N. et al. A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo. Stem Cell Res. Ther. 11(1), 1–16 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mendivil-Perez, M. et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res. 63(2), e12415 (2017).

    Article 

    Google Scholar
     

  • Rafat, A., Roushandeh, A. M., Alizadeh, A., Hashemi-Firouzi, N. & Golipoor, Z. Comparison of the melatonin preconditioning efficacy between bone marrow and adipose-derived mesenchymal stem cells. Cell. J. (Yakhteh) 20(4), 450 (2019).


    Google Scholar
     

  • Lee, S. J., Jung, Y. H., Oh, S. Y., Yun, S. P. & Han, H. J. Melatonin enhances the human mesenchymal stem cells motility via melatonin receptor 2 coupling with Gαq in skin wound healing. J. Pineal Res. 57(4), 393–407 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, Y-H. et al. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res. Ther. 13(1), 73 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, H. M. et al. Proliferative effects of melatonin on S chwann cells: implication for nerve regeneration following peripheral nerve injury. J. Pineal Res. 56(3), 322–332 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakade, O., Koyama, H., Ariji, H., Yajima, A. & Kaku, T. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J. Pineal Res. 27(2), 106–110 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, N. et al. Antioxidant preconditioning improves therapeutic outcomes of adipose tissue-derived mesenchymal stem cells through enhancing intrahepatic engraftment efficiency in a mouse liver fibrosis model. Stem Cell Res. Ther. 11, 1–11 (2020).

    Article 

    Google Scholar
     

  • Ma, Q. et al. Poly (lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells 36(4), 540–550 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karkehabadi, H., Abbasi, R., Najafi, R. & Khoshbin, E. The effects of melatonin on the viability and osteogenic/odontogenic differentiation of human stem cells from the apical papilla. Mol. Biol. Rep. 50(11), 8959–8969 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Bernal, D. et al. Melatonin treatment alters biological and immunomodulatory properties of human dental pulp mesenchymal stem cells via augmented transforming growth factor beta secretion. J. Endod. 47(3), 424–435 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Patil, S. et al. Dose-dependent effects of melatonin on the viability, proliferation, and differentiation of dental pulp stem cells (DPSCs). J. Person. Med. 12(10), 1620 (2022).

    Article 

    Google Scholar
     

  • Asadi-Golshan, R. et al. Efficacy of dental pulp-derived stem cells conditioned medium loaded in collagen hydrogel in spinal cord injury in rats: stereological evidence. J. Chem. Neuroanat. 116, 101978 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naeimi, A., Zaminy, A., Amini, N., Balabandi, R. & Golipoor, Z. Effects of melatonin-pretreated adipose-derived mesenchymal stem cells (MSC) in an animal model of spinal cord injury. BMC Neurosci. 23(1), 65 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mias, C. et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 27(11), 2734–2743 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamini, A. et al. Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin as a Differentiation Factor (2008).

  • Jamilian, M. et al. Effects of melatonin supplementation on hormonal, inflammatory, genetic, and oxidative stress parameters in women with polycystic ovary syndrome. Front. Endocrinol. 10, 273 (2019).

    Article 

    Google Scholar
     

  • Sakai, K. et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J. Clin. Investig. 122(1), 80–90 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Darabi, S. et al. Trans-differentiation of human dental pulp stem cells into cholinergic-like neurons via nerve growth factor. Basic. Clin. Neurosci. 10(6), 609 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darvishi, M. et al. Differentiation of human dental pulp stem cells into functional motor neuron: in vitro and ex vivo study. Tissue Cell 72, 101542 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Almeida, F. M. et al. Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury. J. Neurotrauma 28(9), 1939–1949 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Nagashima, K. et al. Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Sci. Rep. 7(1), 13500 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicola, F. C. et al. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Braz. J. Med. Biol. Res. 49, e5319 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feitosa, M. L. T. et al. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta Cirurg. Bras. 32, 540–549 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Song, M., Lee, J-H., Bae, J., Bu, Y. & Kim, E-C. Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplant. 26(6), 1001–1016 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, M., Jue, S. S., Cho, Y. A. & Kim, E. C. Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J. Neurosci. Res. 93(6), 973–983 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonaventura, G. et al. Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res. 379, 421–428 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Demircan, P. C. et al. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10), 1205–1220 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17(6), 1157–1172 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamanoue, M. et al. Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J. Neurosci. Res. 43(5), 554–564 (1996).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4547(19960301)43:53.0.CO;2-H” data-track-item_id=”10.1002/(SICI)1097-4547(19960301)43:53.0.CO;2-H” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4547%2819960301%2943%3A5%3C554%3A%3AAID-JNR5%3E3.0.CO%3B2-H” aria-label=”Article reference 49″ data-doi=”10.1002/(SICI)1097-4547(19960301)43:53.0.CO;2-H”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitamura, K. et al. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J. Neurosci. Res. 85(11), 2332–2342 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baysal, E., Zırh, E. B., Buber, E., Jakobsen, T. K. & Zeybek, N. D. The effect of melatonin on Hippo signaling pathway in dental pulp stem cells. Neurochem. Int. 148, 105079 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mortezaee, K. et al. Melatonin pretreatment enhances the homing of bone marrow-derived mesenchymal stem cells following transplantation in a rat model of liver fibrosis. Iran. Biomed. J. 20(4), 207 (2016).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Y. et al. Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplant. 23(10), 1279–1291 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, T-H. Functional effect of mouse embryonic stem cell implantation after spinal cord injury. J. Exerc. Rehabil. 9(2), 230–233 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basso, D. M., Beattie, M. S. & Bresnahan, J. C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12(1), 1–21 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letaif, O. B. et al. Standardization of an experimental model of intradural injection after spinal cord injury in rats. Clinics 76(2021).

  • Yang, R., Cai, X., Li, J., Liu, F. & Sun, T. Protective effects of MiR-129-5p on acute spinal cord injury rats. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 25, 8281 (2019).

    CAS 

    Google Scholar