
Silva, N. A., Sousa, N., Reis, R. L. & Salgado, A. J. From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol. 114, 25–57 (2014).
Yuan, S., Shi, Z., Cao, F., Li, J. & Feng, S. Epidemiological features of spinal cord injury in China: a systematic review. Front. Neurol. 9, 683 (2018).
Xu, Y. et al. Spinal cord regeneration using dental stem cell-based therapies. Acta Neurobiol. Exp. 79(4), 319–327 (2019).
Scholpa, N. E. & Schnellmann, R. G. Mitochondrial-based therapeutics for the treatment of spinal cord injury: mitochondrial biogenesis as a potential pharmacological target. J. Pharmacol. Exp. Ther. 363(3), 303–313 (2017).
Yamamoto, A., Sakai, K., Matsubara, K., Kano, F. & Ueda, M. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci. Res. 78, 16–20 (2014).
Hu, Z.-B. et al. Platelet rich plasma enhanced neuro-regeneration of human dental pulp stem cells in vitro and in rat spinal cord. Ann. Transl. Med. 10(10) (2022).
Dalamagkas, K., Tsintou, M., Seifalian, A. & Seifalian, A. M. Translational regenerative therapies for chronic spinal cord injury. Int. J. Mol. Sci. 19(6), 1776 (2018).
Gazdic, M. et al. Stem cells therapy for spinal cord injury. Int. J. Mol. Sci. 19(4), 1039 (2018).
Shao, A., Tu, S., Lu, J. & Zhang, J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res. Ther. 10(1), 1–13 (2019).
Yamazaki, K., Kawabori, M., Seki, T. & Houkin, K. Clinical trials of stem cell treatment for spinal cord injury. Int. J. Mol. Sci. 21(11), 3994 (2020).
Gao, L. et al. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. (2020).
Huang, L., Fu, C., Xiong, F., He, C. & Wei, Q. Stem cell therapy for spinal cord injury. Cell Transplant. 30, 0963689721989266 (2021).
Li, Y. et al. Peripheral nerve regeneration using different germ layer-derived adult stem cells in the past decade. Behav. Neurol. (2021).
Volarevic, V. et al. Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci. 15(1), 36 (2018).
Liau, L. L. et al. Treatment of spinal cord injury with mesenchymal stem cells. Cell. Biosci. 10(1), 1–17 (2020).
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. 97(25), 13625–13630 (2000).
Karamzadeh, R. & Eslaminejad, M. B. Dental-Related Stem Cells and Their Potential in Regenerative Medicine (IntechOpen, 2013).
Ezquer, F. E., Ezquer, M. E., Vicencio, J. M. & Calligaris, S. D. Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: increasing transplanted cell resistance and increasing tissue receptivity. Cell Adhes. Migr. 11(1), 110–119 (2017).
Liao, N. et al. Antioxidant preconditioning improves therapeutic outcomes of adipose tissue-derived mesenchymal stem cells through enhancing intrahepatic engraftment efficiency in a mouse liver fibrosis model. Stem Cell Res. Ther. 11(1), 1–11 (2020).
Zhou, L. N. et al. A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo. Stem Cell Res. Ther. 11(1), 1–16 (2020).
Mendivil-Perez, M. et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res. 63(2), e12415 (2017).
Rafat, A., Roushandeh, A. M., Alizadeh, A., Hashemi-Firouzi, N. & Golipoor, Z. Comparison of the melatonin preconditioning efficacy between bone marrow and adipose-derived mesenchymal stem cells. Cell. J. (Yakhteh) 20(4), 450 (2019).
Lee, S. J., Jung, Y. H., Oh, S. Y., Yun, S. P. & Han, H. J. Melatonin enhances the human mesenchymal stem cells motility via melatonin receptor 2 coupling with Gαq in skin wound healing. J. Pineal Res. 57(4), 393–407 (2014).
Chan, Y-H. et al. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res. Ther. 13(1), 73 (2022).
Chang, H. M. et al. Proliferative effects of melatonin on S chwann cells: implication for nerve regeneration following peripheral nerve injury. J. Pineal Res. 56(3), 322–332 (2014).
Nakade, O., Koyama, H., Ariji, H., Yajima, A. & Kaku, T. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J. Pineal Res. 27(2), 106–110 (1999).
Liao, N. et al. Antioxidant preconditioning improves therapeutic outcomes of adipose tissue-derived mesenchymal stem cells through enhancing intrahepatic engraftment efficiency in a mouse liver fibrosis model. Stem Cell Res. Ther. 11, 1–11 (2020).
Ma, Q. et al. Poly (lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells 36(4), 540–550 (2018).
Karkehabadi, H., Abbasi, R., Najafi, R. & Khoshbin, E. The effects of melatonin on the viability and osteogenic/odontogenic differentiation of human stem cells from the apical papilla. Mol. Biol. Rep. 50(11), 8959–8969 (2023).
García-Bernal, D. et al. Melatonin treatment alters biological and immunomodulatory properties of human dental pulp mesenchymal stem cells via augmented transforming growth factor beta secretion. J. Endod. 47(3), 424–435 (2021).
Patil, S. et al. Dose-dependent effects of melatonin on the viability, proliferation, and differentiation of dental pulp stem cells (DPSCs). J. Person. Med. 12(10), 1620 (2022).
Asadi-Golshan, R. et al. Efficacy of dental pulp-derived stem cells conditioned medium loaded in collagen hydrogel in spinal cord injury in rats: stereological evidence. J. Chem. Neuroanat. 116, 101978 (2021).
Naeimi, A., Zaminy, A., Amini, N., Balabandi, R. & Golipoor, Z. Effects of melatonin-pretreated adipose-derived mesenchymal stem cells (MSC) in an animal model of spinal cord injury. BMC Neurosci. 23(1), 65 (2022).
Mias, C. et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 27(11), 2734–2743 (2009).
Zamini, A. et al. Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin as a Differentiation Factor (2008).
Jamilian, M. et al. Effects of melatonin supplementation on hormonal, inflammatory, genetic, and oxidative stress parameters in women with polycystic ovary syndrome. Front. Endocrinol. 10, 273 (2019).
Sakai, K. et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J. Clin. Investig. 122(1), 80–90 (2012).
Darabi, S. et al. Trans-differentiation of human dental pulp stem cells into cholinergic-like neurons via nerve growth factor. Basic. Clin. Neurosci. 10(6), 609 (2019).
Darvishi, M. et al. Differentiation of human dental pulp stem cells into functional motor neuron: in vitro and ex vivo study. Tissue Cell 72, 101542 (2021).
de Almeida, F. M. et al. Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury. J. Neurotrauma 28(9), 1939–1949 (2011).
Nagashima, K. et al. Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Sci. Rep. 7(1), 13500 (2017).
Nicola, F. C. et al. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Braz. J. Med. Biol. Res. 49, e5319 (2016).
Feitosa, M. L. T. et al. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta Cirurg. Bras. 32, 540–549 (2017).
Song, M., Lee, J-H., Bae, J., Bu, Y. & Kim, E-C. Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplant. 26(6), 1001–1016 (2017).
Song, M., Jue, S. S., Cho, Y. A. & Kim, E. C. Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J. Neurosci. Res. 93(6), 973–983 (2015).
Bonaventura, G. et al. Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res. 379, 421–428 (2020).
Demircan, P. C. et al. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10), 1205–1220 (2011).
Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17(6), 1157–1172 (1996).
Hamanoue, M. et al. Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J. Neurosci. Res. 43(5), 554–564 (1996).
<a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4547(19960301)43:53.0.CO;2-H” data-track-item_id=”10.1002/(SICI)1097-4547(19960301)43:53.0.CO;2-H” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4547%2819960301%2943%3A5%3C554%3A%3AAID-JNR5%3E3.0.CO%3B2-H” aria-label=”Article reference 49″ data-doi=”10.1002/(SICI)1097-4547(19960301)43:53.0.CO;2-H”>Article
CAS
PubMed
Google Scholar
Kitamura, K. et al. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J. Neurosci. Res. 85(11), 2332–2342 (2007).
Baysal, E., Zırh, E. B., Buber, E., Jakobsen, T. K. & Zeybek, N. D. The effect of melatonin on Hippo signaling pathway in dental pulp stem cells. Neurochem. Int. 148, 105079 (2021).
Mortezaee, K. et al. Melatonin pretreatment enhances the homing of bone marrow-derived mesenchymal stem cells following transplantation in a rat model of liver fibrosis. Iran. Biomed. J. 20(4), 207 (2016).
Tang, Y. et al. Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplant. 23(10), 1279–1291 (2014).
Lee, T-H. Functional effect of mouse embryonic stem cell implantation after spinal cord injury. J. Exerc. Rehabil. 9(2), 230–233 (2013).
Basso, D. M., Beattie, M. S. & Bresnahan, J. C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12(1), 1–21 (1995).
Letaif, O. B. et al. Standardization of an experimental model of intradural injection after spinal cord injury in rats. Clinics 76(2021).
Yang, R., Cai, X., Li, J., Liu, F. & Sun, T. Protective effects of MiR-129-5p on acute spinal cord injury rats. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 25, 8281 (2019).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-78077-z