Search
Close this search box.

Therapeutic application of circular RNA aptamers in a mouse model of psoriasis – Nature Biotechnology

  • Hause, A. M. et al. Safety monitoring of bivalent COVID-19 mRNA vaccine booster doses among persons aged >/=12 years—United States, August 31-October 23, 2022. MMWR Morb. Mortal Wkly Rep. 71, 1401–1406 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev. Drug Discov. 20, 629–651 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell. 78, 70–84.e76 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e821 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell. 74, 508–520.e504 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. X. et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell. 82, 420–434.e426 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. X. & Chen, L. L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2390 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bou-Nader, C., Gordon, J. M., Henderson, F. E. & Zhang, J. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA 25, 539–556 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, S. S., Song, B. & Kaufman, R. J. PKR protects colonic epithelium against colitis through the unfolded protein response and prosurvival signaling. Inflamm. Bowel Dis. 18, 1735–1742 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Grolleau, A., Kaplan, M. J., Hanash, S. M., Beretta, L. & Richardson, B. Impaired translational response and increased protein kinase PKR expression in T cells from lupus patients. J. Clin. Invest. 106, 1561–1568 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rath, E. et al. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61, 1269–1278 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. & Bevilacqua, P. C. Activation of the protein kinase PKR by short double-stranded RNAs with single-stranded tails. RNA 10, 1934–1945 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingrand, S. et al. The oxindole/imidazole derivative C16 reduces in vivo brain PKR activation. FEBS Lett. 581, 4473–4478 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mouton-Liger, F. et al. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model. Cell Death Dis. 6, e1594 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, T. et al. Therapeutic effects of the PKR inhibitor C16 suppressing tumor proliferation and angiogenesis in hepatocellular carcinoma in vitro and in vivo. Sci. Rep. 10, 5133 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E., & Barker, J. Psoriasis. Lancet 397, 1301–1315 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moldovan, L. I. et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med. Genomics 12, 174 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moldovan, L. I. et al. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp. Dermatol. 30, 1187–1196 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeler, S. et al. Global circRNA expression changes predate clinical and histological improvements of psoriasis patients upon secukinumab treatment. PLoS ONE 17, e0275219 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swindell, W. R. et al. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Med. 9, 24 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obi, P. & Chen, Y. G. The design and synthesis of circular RNAs. Methods 196, 85–103 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puttaraju, M. & Been, M. D. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res. 20, 5357–5364 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, S. K., Nan, F., Liu, C. X., Yang, L. & Chen, L. L. Mapping circular RNA structures in living cells by SHAPE-MaP. Methods 196, 47–55 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhen, K. L. et al. Structural organization of the human gene (PKR) encoding an interferon-inducible RNA-dependent protein kinase (PKR) and differences from its mouse homolog. Genomics 36, 197–201 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samuel, C. E. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J. Biol. Chem. 268, 7603–7606 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. et al. lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription. Science 373, 547–555 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. W. et al. MutS functions as a clamp loader by positioning MutL on the DNA during mismatch repair. Nat. Commun. 13, 5808 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hummert, J. et al. Photobleaching step analysis for robust determination of protein complex stoichiometries. Mol. Biol. Cell. 32, ar35 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, J., He, K., Cheng, M., Yu, J. & Fang, X. Analysis of the steps in single-molecule photobleaching traces by using the hidden Markov model and maximum-likelihood clustering. Chem. Asian J. 9, 2303–2308 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nallagatla, S. R., Toroney, R. & Bevilacqua, P. C. Regulation of innate immunity through RNA structure and the protein kinase PKR. Curr. Opin. Struct. Biol. 21, 119–127 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinicke, L. A., Nallagatla, S. R., Hull, C. M. & Bevilacqua, P. C. RNA helical imperfections regulate activation of the protein kinase PKR: effects of bulge position, size, and geometry. RNA 17, 957–966 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Y., Tao, H., He, J. & Huang, S. Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 15, 1829–1852 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husain, B., Hesler, S. & Cole, J. L. Regulation of PKR by RNA: formation of active and inactive dimers. Biochemistry 54, 6663–6672 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayo, C. B. et al. Structural basis of protein kinase R autophosphorylation. Biochemistry 58, 2967–2977 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dörner, T. & Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 393, 2344–2358 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Taylor, S. S., Haste, N. M. & Ghosh, G. PKR and eIF2alpha: integration of kinase dimerization, activation, and substrate docking. Cell 122, 823–825 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. K. et al. CIRCexplorer3: a CLEAR pipeline for direct comparison of circular and linear RNA expression. Genom. Proteom. Bioinform. 17, 511–521 (2019).

    Article 

    Google Scholar
     

  • Futschik, M. E. & Carlisle, B. Noise-robust soft clustering of gene expression time-course data. J. Bioinform. Comput. Biol. 3, 965–988 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, L. & M, E. F. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5–7 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lande, R. & Gilliet, M. Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann. N. Y. Acad. Sci. 1183, 89–103 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiricozzi, A., Romanelli, P., Volpe, E., Borsellino, G. & Romanelli, M. Scanning the immunopathogenesis of psoriasis. Int. J. Mol. Sci. 19, 179 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. L. et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095–6106 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135–143 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rácz, E. et al. Narrowband ultraviolet B inhibits innate cytosolic double-stranded RNA receptors in psoriatic skin and keratinocytes. Br. J. Dermatol. 164, 838–847 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L. J. et al. Antimicrobial peptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity 45, 119–130 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. L. et al. A guide to naming eukaryotic circular RNAs. Nat. Cell Biol. 25, 1–5 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naidu, G. S. et al. A combinatorial library of lipid nanoparticles for cell type-specific mRNA delivery. Adv. Sci. 10, e2301929 (2023).

    Article 

    Google Scholar
     

  • Jones, S. A. et al. GILZ regulates Th17 responses and restrains IL-17-mediated skin inflammation. J. Autoimmun. 61, 73–80 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fredriksson, T. & Pettersson, U. Severe psoriasis-oral therapy with a new retinoid. Dermatologica 157, 238–244 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langley, R. G. & Ellis, C. N. Evaluating psoriasis with psoriasis area and severity index, psoriasis global assessment, and lattice system physician’s global assessment. J. Am. Acad. Dermatol. 51, 563–569 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell. 76, 96–109.e109 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, L. et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728–1744.e1716 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gal-Ben-Ari, S., Barrera, I., Ehrlich, M. & Rosenblum, K. PKR: a kinase to remember. Front. Mol. Neurosci. 11, 480 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tronel, C., Page, G., Bodard, S., Chalon, S. & Antier, D. The specific PKR inhibitor C16 prevents apoptosis and IL-1beta production in an acute excitotoxic rat model with a neuroinflammatory component. Neurochem. Int. 64, 73–83 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, R. C. et al. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J. Neurochem. 83, 1215–1225 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stern, E., Chinnakkaruppan, A., David, O., Sonenberg, N. & Rosenblum, K. Blocking the eIF2alpha kinase (PKR) enhances positive and negative forms of cortex-dependent taste memory. J. Neurosci. 33, 2517–2525 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, P. J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-gamma-mediated disinhibition. Cell 147, 1384–1396 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, X. et al. Circular RNA aptamers ameliorate AD-relevant phenotypes by targeting PKR. Preprint at bioRxiv https://doi.org/10.1101/2024.03.27.583257 (2024).

  • Kaushik, S. B. & Lebwohl, M. G. Psoriasis: which therapy for which patient: psoriasis comorbidities and preferred systemic agents. J. Am. Acad. Dermatol. 80, 27–40 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Manfreda, V., Esposito, M., Campione, E., Bianchi, L. & Giunta, A. Apremilast efficacy and safety in a psoriatic arthritis patient affected by HIV and HBV virus infections. Postgrad. Med. 131, 239–240 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Guimaraes, C. P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donovan, J., Rath, S., Kolet-Mandrikov, D. & Korennykh, A. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA 23, 1660–1671 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, M. S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsui, T., Tanihara, K. & Date, T. Expression of unphosphorylated form of human double-stranded RNA-activated protein kinase in Escherichia coli. Biochem. Biophys. Res. Commun. 284, 798–807 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senavirathne, G. et al. Widespread nuclease contamination in commonly used oxygen-scavenging systems. Nat. Methods 12, 901–902 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Wang, J. & Xiao, Y. 3dRNA: 3D structure prediction from linear to circular RNAs. J. Mol. Biol. 434, 167452 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Othniel, J. “doi: 10.17632/j6fmfjrc5y.1”, Mendeley Data, V1. Mendely Data https://doi.org/10.17632/94jg7jkt6n.1 (2020).

  • Guo, S. K. et al. Therapeutic Application of Circular RNA Aptamers in a Mouse Model of Psoriasis (Gene Expression Omnibus, 2024); http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE248680

  • Weidinger S., Rodriguez E., Tsoi L. C. & Gudjonsson J. Atopic Dermatitis, Psoriasis and Healthy Control RNA-seq Cohort (Gene Expression Omnibus, 2019); https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121212