Search
Close this search box.

The soil microbiome of Lolium perenne L. depends on host genotype, is modified by nitrogen level and varies across season – Scientific Reports

  • Humphreys, M. O., Feuerstein, U. & Vandewalle, M. Ryegrasses. In Fodder Crops and Amenity Grasses (eds Boller, B. et al.) 211–260 (Springer, 2010).

    Chapter 

    Google Scholar
     

  • Talbot, M. Yield variability of crop varieties in the U.K. J. Agric. Sci. 102, 315–321 (1984).

    Article 

    Google Scholar
     

  • Ravel, C. & Charmet, G. A comprehensive multisite recurrent selection strategy in perennial ryegrass. Euphytica 88, 215–226 (1996).

    Article 

    Google Scholar
     

  • Jafari, A., Connolly, V. & Walsh, E. Genetic analysis of yield and quality in full-sib families of perennial ryegrass (Lolium perenne L.) under two cutting managements. Irish J. Agric. Food Res. 42, 275–292 (2003).


    Google Scholar
     

  • Conaghan, P., Casler, M., McGilloway, D., O’Kiely, P. & Dowley, L. Genotype x environment interactions for herbage yield of perennial ryegrass sward plots in Ireland. Grass Forage Sci. 63, 107–120. https://doi.org/10.1111/j.1365-2494.2007.00618.x (2008).

    Article 

    Google Scholar
     

  • Fè, D. et al. Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genom. 16, 921. https://doi.org/10.1186/s12864-015-2163-3 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bais, H., Weir, T., Perry, L., Gilroy, S. & Vivanco, J. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuske, C. et al. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl. Environ. Microbiol. 68, 1854–1863. https://doi.org/10.1128/AEM.68.4.1854-1863.2002 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giovannetti, M., Salvioli di Fossalunga, A., Stringlis, I. A., Proietti, S. & Fiorilli, V. Unearthing soil-plant-microbiota crosstalk: Looking back to move forward. Front. Plant Sci. 13, 1082752. https://doi.org/10.3389/fpls.2022.1082752 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aira, M., Gomez-Brandon, M., Lazcano, C., Baath, E. & Dominguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42, 2276–2281. https://doi.org/10.1016/j.soilbio.2010.08.029 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bouffaud, M. et al. Is diversification history of maize influencing selection of soil bacteria by roots?. Mol. Ecol. 21, 195–206. https://doi.org/10.1111/j.1365-294X.2011.05359.x (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Peiffer, J. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 110, 6548–6553. https://doi.org/10.1073/pnas.1302837110 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomes, E. et al. Root-associated microbiome of maize genotypes with contrasting phosphorus use efficiency. Phytobiomes J. 2, 129–137. https://doi.org/10.1094/PBIOMES-03-18-0012-R (2018).

    Article 

    Google Scholar
     

  • Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95. https://doi.org/10.1038/nature11336 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kudjordjie, E. N. et al. Fusarium oxysporum disrupts microbiome-metabolome networks in Arabidopsis thaliana roots. Microbiol. Spectr. 10, e0122622. https://doi.org/10.1128/spectrum.01226-22 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403. https://doi.org/10.1016/j.chom.2015.01.011 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911–E920. https://doi.org/10.1073/pnas.1414592112 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862. https://doi.org/10.1371/journal.pbio.2003862 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards, J. et al. Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biol. 20, 221. https://doi.org/10.1186/s13059-019-1825-x (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kavamura, V. et al. Wheat dwarfing influences selection of the rhizosphere microbiome. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-58402-y (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kwak, M. J. et al. Author Correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1117. https://doi.org/10.1038/nbt1118-1117 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marasco, R. et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7, e48479. https://doi.org/10.1371/journal.pone.0048479 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. et al. Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage. J. Agric. Food Chem. 66, 2645–2653. https://doi.org/10.1021/acs.jafc.7b06155 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol. Lett. 22, 1221–1232. https://doi.org/10.1111/ele.13273 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dubey, A. et al. Soil microbiome: A key player for conservation of soil health under changing climate. Biodivers. Conserv. 28, 2405–2429. https://doi.org/10.1007/s10531-019-01760-5 (2019).

    Article 

    Google Scholar
     

  • Berendsen, R., Pieterse, C. & Bakker, P. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bakker, P. et al. The soil-borne identity and microbiome-assisted agriculture: Looking back to the future. Mol. Plant 13, 1394–1401. https://doi.org/10.1016/j.molp.2020.09.017 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol. Biochem. 98, 1–10. https://doi.org/10.1016/j.soilbio.2016.04.004 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Trivedi, P., Batista, B., Bazany, K. & Singh, B. Plant-microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 234, 1951–1959. https://doi.org/10.1111/nph.18016 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cougnon, M. et al. In situ quantification of forage grass root biomass, distribution and diameter classes under two N fertilisation rates. Plant Soil 411, 409–422. https://doi.org/10.1007/s11104-016-3034-7 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Humphreys, M. et al. Root imaging showing comparisons in root distribution and ontogeny in novel Festulolium populations and closely related perennial ryegrass varieties. Food Energy Secur. https://doi.org/10.1002/fes3.145 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wedderburn, M., Crush, J., Pengelly, W. & Walcroft, J. Root growth patterns of perennial ryegrasses under well-watered and drought conditions. N. Z. J. Agric. Res. 53, 377–388. https://doi.org/10.1080/00288233.2010.514927 (2010).

    Article 

    Google Scholar
     

  • Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696. https://doi.org/10.1038/srep33696 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, C. et al. Land-use changes influence soil bacterial communities in a meadow grassland in Northeast China. Solid Earth 8, 1119–1129. https://doi.org/10.5194/se-8-1119-2017 (2017).

    Article 

    Google Scholar
     

  • Zifcakova, L., Vetrovsky, T., Howe, A. & Baldrian, P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18, 288–301. https://doi.org/10.1111/1462-2920.13026 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci. Rep. 7, 3267. https://doi.org/10.1038/s41598-017-03539-6 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 127, 22–30. https://doi.org/10.1016/j.soilbio.2018.08.022 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Terrazas, R. A. et al. Nitrogen availability modulates the host control of the barley rhizosphere microbiota. bioRxiv 605204 (2020).

  • Wang, X. et al. Soil nitrogen treatment alters microbiome networks across farm niches. Front. Microbiol. 12, 786156. https://doi.org/10.3389/fmicb.2021.786156 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escudero-Martinez, C. et al. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat. Commun. 13(1), 3443. https://doi.org/10.1038/s41467-022-31022-y (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagy, I. et al. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genom. 23, 505. https://doi.org/10.1186/s12864-022-08697-0 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wagner, M. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151. https://doi.org/10.1038/ncomms12151 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Plant phenotypic traits eventually shape its microbiota: A common garden test. Front. Microbiol. 9, 2479. https://doi.org/10.3389/fmicb.2018.02479 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, F. et al. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 19, 201. https://doi.org/10.1186/s12866-019-1572-x (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alegria Terrazas, R. et al. A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Sci. Rep. 10, 12916. https://doi.org/10.1038/s41598-020-69672-x (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tannenbaum, I., Rodoni, B., Spangenberg, G., Mann, R. & Sawbridge, T. An assessment of the Lolium perenne (perennial ryegrass) seedborne microbiome across cultivars, time, and biogeography: Implications for microbiome breeding. Microorganisms https://doi.org/10.3390/microorganisms9061205 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow, M., Radomski, C., McDermott, J., Davies, J. & Axelrood, P. Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol. Ecol. 42, 347–357. https://doi.org/10.1016/S0168-6496(02)00392-6 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quaiser, A. et al. Acidobacteria form a coherent but highly diverse group within the bacterial domain: Evidence from environmental genomics. Mol. Microbiol. 50, 563–575. https://doi.org/10.1046/j.1365-2958.2003.03707.x (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janssen, P. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, B., Munro, S., Potts, J. & Millard, P. Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl. Soil Ecol. 36, 147–155. https://doi.org/10.1016/j.apsoil.2007.01.004 (2007).

    Article 

    Google Scholar
     

  • Singh, B. et al. Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur. J. Soil Sci. 57, 72–82. https://doi.org/10.1111/j.1365-2389.2005.00781.x (2006).

    Article 
    CAS 

    Google Scholar
     

  • Navarrete, A. et al. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol. Ecol. 83, 607–621. https://doi.org/10.1111/1574-6941.12018 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, R. & Oberwinkler, F. Direct cytoplasm-cytoplasm connection: An unusual host-parasite interaction of the tremelloid mycoparasite Tetragoniomyces uliginosus. Protoplasma 154, 157–160 (1990).

    Article 

    Google Scholar
     

  • Seki, T., Matsumoto, A., Omura, S. & Takahashi, Y. Distribution and isolation of strains belonging to the order Solirubrobacterales. J. Antibiot. 68, 763–766. https://doi.org/10.1038/ja.2015.67 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Postma, A., Slabbert, E., Postma, F. & Jacobs, K. Soil bacterial communities associated with natural and commercial Cyclopia spp. FEMS Microbiol. Ecol. 92(3), fiw016. https://doi.org/10.1093/femsec/fiw016 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, J., Kent, A., Brisson, V. & Gaudin, A. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146. https://doi.org/10.1186/s40168-019-0756-9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, S., Chen, W. & Wei, G. Resilience and assemblage of soil microbiome in response to chemical contamination combined with plant growth. Appl. Environ. Microbiol. 85, e02523-18. https://doi.org/10.1128/AEM.02523-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm, R., Singh, R., Eltis, L. & Mohn, W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429. https://doi.org/10.1038/s41396-018-0279-6 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, L., Ouyang, S., Wang, Y., Shen, X. & Zhang, L. Solirubrobacter phytolaccae sp. nova, an endophytic bacterium isolated from roots of Phytolacca acinosa Roxb. Int. J. Syst. Evol. Microbiol. 64, 858–862. https://doi.org/10.1099/ijs.0.057554-0 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarikhani, E., Sagova-Mareckova, M., Omelka, M. & Kopecky, J. The effect of peat and iron supplements on the severity of potato common scab and bacterial community in tuberosphere soil. FEMS Microbiol. Ecol. 93(1), fiw206. https://doi.org/10.1093/femsec/fiw206 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boukhatem, Z. F., Merabet, C. & Tsaki, H. Plant growth promoting Actinobacteria, the most promising candidates as bioinoculants?. Front. Agric. https://doi.org/10.3389/fagro.2022.849911 (2022).

    Article 

    Google Scholar
     

  • De Luca, V., de Barreda, D., Lidon, A. & Lull, C. Effect of nitrogen-fixing microorganisms and amino acid-based biostimulants on perennial ryegrass. HortTechnology 30, 280–291. https://doi.org/10.21273/HORTTECH04236-19 (2020).

    Article 

    Google Scholar
     

  • Tannenbaum, I. et al. Profiling the Lolium perenne microbiome: From seed to seed. Phytobiomes J. 4, 281–289. https://doi.org/10.1094/PBIOMES-03-20-0026-R (2020).

    Article 

    Google Scholar
     

  • Madsen, H. B. A pedological soil classification system for Danish soils. Pedologie 33, 171–197 (1983).

    CAS 

    Google Scholar
     

  • Madsen, H. B. & Jensen, N. H. The establishment of pedological soil databases in Denmark. Geografisk Tidsskrift-Danish Journal of Geography 85, 1–8 (1985).

    Article 

    Google Scholar
     

  • Breuning-Madsen, H. & Jensen, N. H. Pedological regional variations in well-drained soils. Geografisk Tidsskrift-Danish Journal of Geography 92, 61–69 (1992).

    Article 

    Google Scholar
     

  • Adhikari, K. et al. High-resolution 3-D mapping of soil texture in Denmark. Soil Sci. Soc. Am. J. 77, 860–876. https://doi.org/10.2136/sssaj2012.0275 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Adhikari, K., Minasny, B., Greve, M. & Greve, M. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma 214, 101–113. https://doi.org/10.1016/j.geoderma.2013.09.023 (2014).

    Article 

    Google Scholar
     

  • Fè, D., Pedersen, M. G., Jensen, C. S. & Jensen, J. Genetic and environmental variation in a commercial breeding program of perennial ryegrass. Crop Sci. Soc. Am. Spec. Publ. 55(2), 631–640 (2015).

    Article 

    Google Scholar
     

  • Magoc, T. & Salzberg, S. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R., Haas, B., Clemente, J., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, B. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504. https://doi.org/10.1101/gr.112730.110 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/NMETH.2604 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schloss, P. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edgar, R. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W., Simpson, J. & Levesque, C. A. RAM: R for amplicon-sequencing-based microbial-ecology. R package version 1.2. 1.7. http://cran.r-project.org/package=RAM (2018).

  • Kembel, S. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst., 1695. https://igraph.org (2006).

  • Chen, J. et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28, 2106–2113. https://doi.org/10.1093/bioinformatics/bts342 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Zhang, X. & Yang, L. GUniFrac: Generalized UniFrac distances, distance-based multivariate methods and feature-based univariate methods for microbiome data analysis. https://cran.r-project.org/web/packages/GUniFrac/index.html (2008).

  • Oksanen, J. et al. vegan: Community ecology package. R package version 2.6-2. https://cran.r-project.org/package=vegan

  • Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar