Kouroupis, D., Best, T. M., Kaplan, L. D., Correa, D. & Griswold, A. J. Single-cell RNA-sequencing identifies infrapatellar fat pad macrophage polarization in acute synovitis/fat pad fibrosis and cell therapy. Bioengineering 8(11), 166. https://doi.org/10.3390/bioengineering8110166 (2021).
Kouroupis, D., Bowles, A. C., Best, T. M., Kaplan, L. D. & Correa, D. CD10/Neprilysin enrichment in infrapatellar fat pad-derived mesenchymal stem cells under regulatory-compliant conditions: Implications for efficient synovitis and fat pad fibrosis reversal. Am. J. Sports Med. 48, 2013–2027. https://doi.org/10.1177/0363546520917699 (2020).
Pascual-Garrido, C., Rolón, A. & Makino, A. Treatment of chronic patellar tendinopathy with autologous bone marrow stem cells: A 5-year-followup. Stem Cells Int. 2012, 953510. https://doi.org/10.1155/2012/953510 (2012).
Fu, K., Robbins, S. R. & McDougall, J. J. Osteoarthritis: The genesis of pain. Rheumatology 57, iv43–iv50. https://doi.org/10.1093/rheumatology/kex419 (2018).
Zhu, C., Wu, W. & Qu, X. Mesenchymal stem cells in osteoarthritis therapy: A review. Am. J. Transl. Res. 13, 448–461 (2021).
Wong, K. L. et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: A prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy 29, 2020–2028. https://doi.org/10.1016/j.arthro.2013.09.074 (2013).
Vangsness, C. T. Jr. et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: A randomized, double-blind, controlled study. J. Bone Joint Surg. Am. 96, 90–98. https://doi.org/10.2106/JBJS.M.00058 (2014).
Lamo-Espinosa, J. M. et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Multicenter randomized controlled clinical trial (phase I/II). J. Transl. Med. 14, 246. https://doi.org/10.1186/s12967-016-0998-2 (2016).
Pers, Y. M. et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: A phase I dose-escalation trial. Stem Cells Transl. Med. 5, 847–856. https://doi.org/10.5966/sctm.2015-0245 (2016).
Koh, Y. G., Kwon, O. R., Kim, Y. S., Choi, Y. J. & Tak, D. H. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy 32, 97–109. https://doi.org/10.1016/j.arthro.2015.09.010 (2016).
Lee, W. S., Kim, H. J., Kim, K. I., Kim, G. B. & Jin, W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: A phase IIB, randomized, placebo-controlled clinical trial. Stem Cells Transl. Med. 8, 504–511. https://doi.org/10.1002/sctm.18-0122 (2019).
Wang, Y. et al. Curative effect of human umbilical cord mesenchymal stem cells by intra-articular injection for degenerative knee osteoarthritis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 30, 1472–1477. https://doi.org/10.7507/1002-1892.20160305 (2016).
Waterman, R. S., Tomchuck, S. L., Henkle, S. L. & Betancourt, A. M. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5, e10088. https://doi.org/10.1371/journal.pone.0010088 (2010).
Quintero, D. et al. The roles and therapeutic potential of mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front. Bioeng. Biotechnol. 11, 1040762. https://doi.org/10.3389/fbioe.2023.1040762 (2023).
Kouroupis, D., Willman, M. A., Best, T. M., Kaplan, L. D. & Correa, D. Correction to: Infrapatellar fat pad-derived mesenchymal stem cell-based spheroids enhance their therapeutic efficacy to reverse synovitis and fat pad fibrosis. Stem Cell Res. Ther. 12, 282. https://doi.org/10.1186/s13287-021-02294-w (2021).
Ellera Gomes, J. L., da Silva, R. C., Silla, L. M., Abreu, M. R. & Pellanda, R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg. Sports Traumatol. Arthrosc. 20, 373–377. https://doi.org/10.1007/s00167-011-1607-9 (2012).
Bailey, A. M., Mendicino, M. & Au, P. An FDA perspective on preclinical development of cell-based regenerative medicine products. Nat. Biotechnol. 32, 721–723. https://doi.org/10.1038/nbt.2971 (2014).
Kouroupis, D., Wang, X. N., El-Sherbiny, Y., McGonagle, D. & Jones, E. in Safety, Ethics and Regulations (eds Phuc Van Pham & Achim Rosemann) 91–118 (Springer International Publishing, 2017).
Dessels, C., Potgieter, M. & Pepper, M. S. Making the switch: Alternatives to fetal bovine serum for adipose-derived stromal cell expansion. Front. Cell Dev. Biol. 4, 115. https://doi.org/10.3389/fcell.2016.00115 (2016).
Karnieli, O. et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19, 155–169. https://doi.org/10.1016/j.jcyt.2016.11.011 (2017).
Jochems, C. E., van der Valk, J. B., Stafleu, F. R. & Baumans, V. The use of fetal bovine serum: Ethical or scientific problem?. Altern. Lab Anim. 30, 219–227. https://doi.org/10.1177/026119290203000208 (2002).
Kouroupis, D., Bowles, A. C., Best, T. M., Kaplan, L. D. & Correa, D. CD10/neprilysin enrichment in infrapatellar fat pad-derived MSC under regulatory-compliant conditions: Implications for efficient synovitis and fat pad fibrosis reversal. Am. J. Sports Med. 40, 2013–2027 (2020).
Kouroupis, D. et al. Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells. Cytotherapy 22, 677–689. https://doi.org/10.1016/j.jcyt.2020.06.007 (2020).
Hemeda, H., Giebel, B. & Wagner, W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 16, 170–180. https://doi.org/10.1016/j.jcyt.2013.11.004 (2014).
Kouroupis, D. et al. Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Sci. Rep. 9, 10864. https://doi.org/10.1038/s41598-019-47391-2 (2019).
Quintana, D. S., Kemp, A. H., Alvares, G. A. & Guastella, A. J. A role for autonomic cardiac control in the effects of oxytocin on social behavior and psychiatric illness. Front. Neurosci. 7, 48. https://doi.org/10.3389/fnins.2013.00048 (2013).
Buemann, B. & Uvnas-Moberg, K. Oxytocin may have a therapeutical potential against cardiovascular disease. Possible pharmaceutical and behavioral approaches. Med. Hypotheses 138, 109597. https://doi.org/10.1016/j.mehy.2020.109597 (2020).
Li, T., Wang, P., Wang, S. C. & Wang, Y. F. Approaches mediating oxytocin regulation of the immune system. Front. Immunol. 7, 693. https://doi.org/10.3389/fimmu.2016.00693 (2016).
Lee, H. J., Macbeth, A. H., Pagani, J. H. & Young, W. S. 3rd. Oxytocin: The great facilitator of life. Prog. Neurobiol. 88, 127–151. https://doi.org/10.1016/j.pneurobio.2009.04.001 (2009).
Carter, C. S. et al. Is oxytocin “nature’s medicine”?. Pharmacol. Rev. 72, 829–861. https://doi.org/10.1124/pr.120.019398 (2020).
Wu, Y. et al. Oxytocin prevents cartilage matrix destruction via regulating matrix metalloproteinases. Biochem. Biophys. Res. Commun. 486, 601–606. https://doi.org/10.1016/j.bbrc.2017.02.115 (2017).
Elabd, S. K., Sabry, I., Hassan, W. B., Nour, H. & Zaky, K. Possible neuroendocrine role for oxytocin in bone remodeling. Endocr. Regul. 41, 131–141 (2007).
Noiseux, N. et al. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology 153, 5361–5372. https://doi.org/10.1210/en.2012-1402 (2012).
Taha, M. F., Javeri, A., Karimipour, M. & Yamaghani, M. S. Priming with oxytocin and relaxin improves cardiac differentiation of adipose tissue-derived stem cells. J. Cell Biochem. 120, 5825–5834. https://doi.org/10.1002/jcb.27868 (2019).
Prescott, K. et al. Blocking of microglia-astrocyte proinflammatory signaling is beneficial following stroke. Front. Mol. Neurosci. 16, 1305949. https://doi.org/10.3389/fnmol.2023.1305949 (2023).
Leñero, C., Kaplan, L. D., Best, T. M. & Kouroupis, D. CD146+ endometrial-derived mesenchymal stem/stromal cell subpopulation possesses exosomal secretomes with strong immunomodulatory miRNA attributes. Cells 11, 4002. https://doi.org/10.3390/cells11244002 (2022).
Kouroupis, D., Kaplan, L. D. & Best, T. M. Human infrapatellar fat pad mesenchymal stem cells show immunomodulatory exosomal signatures. Sci. Rep. 12, 3609. https://doi.org/10.1038/s41598-022-07569-7 (2022).
Liebmann, K. et al. Modification of mesenchymal stem/stromal cell-derived small extracellular vesicles by calcitonin gene related peptide (CGRP) antagonist: Potential implications for inflammation and pain reversal. Cells 13, 484. https://doi.org/10.3390/cells13060484 (2024).
Spees, J. L. et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Therapy 9, 747–756. https://doi.org/10.1016/j.ymthe.2004.02.012 (2004).
Bobis-Wozowicz, S. et al. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J. Mol. Med. 95, 205–220. https://doi.org/10.1007/s00109-016-1471-7 (2017).
Gerby, S., Attebi, E., Vlaski, M. & Ivanovic, Z. A new clinical-scale serum-free xeno-free medium efficient in ex vivo amplification of mesenchymal stromal cells does not support mesenchymal stem cells. Transfusion 57, 433–439. https://doi.org/10.1111/trf.13902 (2017).
Burnouf, T., Strunk, D., Koh, M. B. C. & Schallmoser, K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?. Biomaterials 76, 371–387. https://doi.org/10.1016/j.biomaterials.2015.10.065 (2016).
Palombella, S. et al. Systematic review and meta-analysis on the use of human platelet lysate for mesenchymal stem cell cultures: Comparison with fetal bovine serum and considerations on the production protocol. Stem Cell Res. Ther. 13, 142. https://doi.org/10.1186/s13287-022-02815-1 (2022).
Bui, H. T. H., Nguyen, L. T. & Than, U. T. T. Influences of xeno-free media on mesenchymal stem cell expansion for clinical application. Tissue Eng. Regen. Med. 18, 15–23. https://doi.org/10.1007/s13770-020-00306-z (2021).
Remst, D. F. G., Blaney Davidson, E. N. & van der Kraan, P. M. Unravelling osteoarthritis-related synovial fibrosis a step closer to solving joint stiffness. Rheumatology 54, 1954–1963. https://doi.org/10.1093/rheumatology/kev228 (2015).
Sokolove, J. & Lepus, C. M. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 5, 77–94. https://doi.org/10.1177/1759720X12467868 (2013).
Bowles, A. C. et al. Signature quality attributes of CD146(+) mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells 38, 1034–1049. https://doi.org/10.1002/stem.3196 (2020).
Moreno-Londoño, A. P. & Robles-Flores, M. Functional roles of CD133: more than stemness associated factor regulated by the microenvironment. Stem Cell Rev. Rep. 20, 25–51. https://doi.org/10.1007/s12015-023-10647-6 (2024).
Aluganti Narasimhulu, C. & Singla, D. K. The role of bone morphogenetic protein 7 (BMP-7) in inflammation in heart diseases. Cells 9, 280. https://doi.org/10.3390/cells9020280 (2020).
Yan, X. et al. BMP7-overexpressing bone marrow-derived mesenchymal stem cells (BMSCs) are more effective than wild-type BMSCs in healing fractures. Exp. Ther. Med. 16, 1381–1388. https://doi.org/10.3892/etm.2018.6339 (2018).
Kumlin, M., Lindberg, K., Haldosen, L. A., Fellander-Tsai, L. & Li, Y. Growth differentiation factor 7 promotes multiple-lineage differentiation in tenogenic cultures of mesenchymal stem cells. Injury 53, 4165–4168. https://doi.org/10.1016/j.injury.2022.09.017 (2022).
Iyer, S. S. & Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32, 23–63. https://doi.org/10.1615/critrevimmunol.v32.i1.30 (2012).
Wen, C. et al. Insulin-like growth factor-1 in articular cartilage repair for osteoarthritis treatment. Arthritis Res. Ther. 23, 277. https://doi.org/10.1186/s13075-021-02662-0 (2021).
van Helvoort, E. M., van der Heijden, E., van Roon, J. A. G., Eijkelkamp, N. & Mastbergen, S. C. The role of interleukin-4 and interleukin-10 in osteoarthritic joint disease: A systematic narrative review. Cartilage 13, 19476035221098170. https://doi.org/10.1177/19476035221098167 (2022).
Hossain, M. A. et al. IGF-1 facilitates cartilage reconstruction by regulating PI3K/AKT, MAPK, and NF-kB signaling in rabbit osteoarthritis. J. Inflamm. Res. 14, 3555–3568. https://doi.org/10.2147/JIR.S316756 (2021).
Hanada, K., Dennis, J. E. & Caplan, A. I. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J. Bone Miner. Res. 12, 1606–1614. https://doi.org/10.1359/jbmr.1997.12.10.1606 (1997).
Scutt, A. & Bertram, P. Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells. Calcif. Tissue Int. 64, 69–77. https://doi.org/10.1007/s002239900581 (1999).
Cai, T. Y. et al. Fibroblast growth factor 2 induces mesenchymal stem cells to differentiate into tenocytes through the MAPK pathway. Mol. Med. Rep. 8, 1323–1328. https://doi.org/10.3892/mmr.2013.1668 (2013).
Hagmann, S. et al. FGF-2 addition during expansion of human bone marrow-derived stromal cells alters MSC surface marker distribution and chondrogenic differentiation potential. Cell Prolif. 46, 396–407. https://doi.org/10.1111/cpr.12046 (2013).
Koike, Y., Yozaki, M., Utani, A. & Murota, H. Fibroblast growth factor 2 accelerates the epithelial-mesenchymal transition in keratinocytes during wound healing process. Sci. Rep. 10, 18545. https://doi.org/10.1038/s41598-020-75584-7 (2020).
Hellingman, C. A. et al. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: Relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng. Part A 16, 545–556. https://doi.org/10.1089/ten.TEA.2008.0551 (2010).
Matzhold, E. M., Wagner, T., Drexler, C., Schonbacher, M. & Kormoczi, G. F. Aberrant ABO B phenotype with irregular anti-B caused by a para-Bombay FUT1 mutation. Transfus. Med. Hemother. 47, 94–97. https://doi.org/10.1159/000499724 (2020).
Ko, J. H., Ryu, J. S., Oh, J. H. & Oh, J. Y. Splenocytes with fucosylation deficiency promote T cell proliferation and differentiation through thrombospondin-1 downregulation. Immunology 171, 262–269. https://doi.org/10.1111/imm.13716 (2024).
Tormin, A. et al. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117, 5067–5077. https://doi.org/10.1182/blood-2010-08-304287 (2011).
Corselli, M. et al. Perivascular support of human hematopoietic stem/progenitor cells. Blood 121, 2891–2901. https://doi.org/10.1182/blood-2012-08-451864 (2013).
Espagnolle, N. et al. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J. Cell. Mol. Med. 18, 104–114 (2014).
Anfosso, F. et al. Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J. Biol. Chem. 276, 1564–1569. https://doi.org/10.1074/jbc.M007065200 (2001).
Covas, D. T. et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp. Hematol. 36, 642–654. https://doi.org/10.1016/j.exphem.2007.12.015 (2008).
Kundu, A. K. & Putnam, A. J. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem. Biophys. Res. Commun. 347, 347–357. https://doi.org/10.1016/j.bbrc.2006.06.110 (2006).
Wangler, S. et al. CD146/MCAM distinguishes stem cell subpopulations with distinct migration and regenerative potential in degenerative intervertebral discs. Osteoarthr. Cartil. 27, 1094–1105. https://doi.org/10.1016/j.joca.2019.04.002 (2019).
Ulrich, C. et al. Human placenta-derived CD146-positive mesenchymal stromal cells display a distinct osteogenic differentiation potential. Stem Cells Dev. 24, 1558–1569. https://doi.org/10.1089/scd.2014.0465 (2015).
Xiong, W. P., Yao, W. Q., Wang, B. & Liu, K. BMSCs-exosomes containing GDF-15 alleviated SH-SY5Y cell injury model of Alzheimer’s disease via AKT/GSK-3beta/beta-catenin. Brain Res. Bull. 177, 92–102. https://doi.org/10.1016/j.brainresbull.2021.09.008 (2021).
Zeng, Q., Li, X., Beck, G., Balian, G. & Shen, F. H. Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone 40, 374–381. https://doi.org/10.1016/j.bone.2006.09.022 (2007).
Zhang, F. et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294–52306. https://doi.org/10.18632/oncotarget.10561 (2016).
Wheeler, K. C. et al. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua. PLoS One 13, e0191040. https://doi.org/10.1371/journal.pone.0191040 (2018).
Park-Min, K. H., Antoniv, T. T. & Ivashkiv, L. B. Regulation of macrophage phenotype by long-term exposure to IL-10. Immunobiology 210, 77–86. https://doi.org/10.1016/j.imbio.2005.05.002 (2005).
Saberianpour, S. et al. Therapeutic effects of statins on osteoarthritis: A review. J. Cell. Biochem. 123, 1285–1297. https://doi.org/10.1002/jcb.30309 (2022).
Becerra-Díaz, M. et al. STAT1-dependent recruitment of Ly6C(hi)CCR2(+) inflammatory monocytes and M2 macrophages in a helminth infection. Pathogens 10, 1287. https://doi.org/10.3390/pathogens10101287 (2021).
Jankowski, M., Broderick, T. L. & Gutkowska, J. The role of oxytocin in cardiovascular protection. Front Psychol 11, 2139. https://doi.org/10.3389/fpsyg.2020.02139 (2020).
Ahmed, M. A. & Elosaily, G. M. Role of oxytocin in deceleration of early atherosclerotic inflammatory processes in adult male rats. Int. J. Clin. Exp. Med. 4, 169–178 (2011).
Nation, D. A. et al. Oxytocin attenuates atherosclerosis and adipose tissue inflammation in socially isolated ApoE-/- mice. Psychosom. Med. 72, 376–382. https://doi.org/10.1097/PSY.0b013e3181d74c48 (2010).
Garrido-Urbani, S. et al. Inhibitory role of oxytocin on TNFα expression assessed in vitro and in vivo. Diabetes Metab. 44, 292–295. https://doi.org/10.1016/j.diabet.2017.10.004 (2018).
Szeto, A., Cecati, M., Ahmed, R., McCabe, P. M. & Mendez, A. J. Oxytocin reduces adipose tissue inflammation in obese mice. Lipids Health Dis. 19, 188. https://doi.org/10.1186/s12944-020-01364-x (2020).
Tang, Y. et al. Oxytocin system alleviates intestinal inflammation by regulating macrophages polarization in experimental colitis. Clin. Sci. 133, 1977–1992. https://doi.org/10.1042/cs20190756 (2019).
Yu, Y., Li, J. & Liu, C. Oxytocin suppresses epithelial cell-derived cytokines production and alleviates intestinal inflammation in food allergy. Biochem. Pharmacol. 195, 114867. https://doi.org/10.1016/j.bcp.2021.114867 (2022).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-80050-9