The piranha gut microbiome provides a selective lens into river water biodiversity – Scientific Reports

  • D’Hondt, K. et al. Microbiome innovations for a sustainable future. Nat. Microbiol. 6, 138–142 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Krüger, A., Schäfers, C., Busch, P. & Antranikian, G. Digitalization in microbiology—Paving the path to sustainable circular bioeconomy. New Biotechnol. 59, 88–96 (2020).

    Article 

    Google Scholar
     

  • Wani, A. K. et al. Bioprospecting culturable and unculturable microbial consortia through metagenomics for bioremediation. Clean. Chem. Eng. 2, 100017 (2022).

    Article 

    Google Scholar
     

  • Gutleben, J. et al. The multi-omics promise in context: From sequence to microbial isolate. Crit. Rev. Microbiol. 44, 212–229 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Naylor, D. et al. Deconstructing the soil microbiome into reduced-complexity functional modules. mBio 11, e01349–01320 (2020).

  • Zegeye Elias, K. et al. Selection, succession, and stabilization of soil microbial consortia. mSystems 4, e00055–00019 (2019).

  • Sarkar, S. et al. Perspective: Simple state communities to study microbial interactions: Examples and future directions. Front. Microbiol. 13, 65 (2022).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. Potential roles of gut microbes in biotransformation of natural products: An overview. Front. Microbiol. 13, 76 (2022).


    Google Scholar
     

  • Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cf, S. F. et al. Bioprospecting of gut microflora for plastic biodegradation. Bioengineered 12, 1040–1053 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diwan, A. D., Harke, S. N., Gopalkrishna & Panche, A. N. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J. Anim. Physiol. Anim. Nutr. 106, 441–469 (2022).

  • Aman, A. M. & Mayenkar, S. Bioprospecting for industrially important biomolecules from gut microflora of the mud crab (Scylla serrata) from an estuary of the Mandovi River in Goa, India. J. Mar. Biol. Assoc. India 63, 94 (2021).


    Google Scholar
     

  • Behera, S. S. & Ray, R. C. Bioprospecting of cowdung microflora for sustainable agricultural, biotechnological and environmental applications. Curr. Res. Microb. Sci. 2, 100018 (2021).

    PubMed 

    Google Scholar
     

  • Yang, H. et al. Quantifying the colonization of environmental microbes in the fish gut: A case study of wild fish populations in the Yangtze River. Front. Microbiol. 12, 56 (2022).

    Article 

    Google Scholar
     

  • Xu, L. et al. Host species influence the gut microbiota of endemic cold-water fish in Upper Yangtze River. Front. Microbiol. 13, 33 (2022).


    Google Scholar
     

  • Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 45 (2018).

    Article 

    Google Scholar
     

  • Kim, P. S. et al. Host habitat is the major determinant of the gut microbiome of fish. Microbiome 9, 166 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, E. F. et al. Anadromous arctic char microbiomes: Bioprospecting in the high arctic. Front. Bioeng. Biotechnol. 7, 12 (2019).

    Article 

    Google Scholar
     

  • Pan, B. et al. Geographical distance, host evolutionary history and diet drive gut microbiome diversity of fish across the Yellow River. Mol. Ecol. 32, 1183–1196 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sylvain, F. -É. et al. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 86, e00789-e1720 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C.-Z., Li, P., Liu, L. & Li, Z.-H. Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture: A review. Environ. Res. 214, 114202 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gallo, B. D., Farrell, J. M. & Leydet, B. F. Fish gut microbiome: A primer to an emerging discipline in the fisheries sciences. Fisheries 45, 271–282 (2020).

    Article 

    Google Scholar
     

  • Silva, S. D. et al. Aeromonas allosaccharophila strain AE59-TE2 is highly antagonistic towards multidrug-resistant human pathogens, what does its genome tell us?. Life 12, 32 (2022).

    Article 

    Google Scholar
     

  • Tyagi, A., Singh, B., Billekallu Thammegowda, N. K. & Singh, N. K. Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Arch. Microbiol. 201, 295–303 (2019).

  • Sylvain, F. et al. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 86, 12 (2020).

    Article 

    Google Scholar
     

  • Madhaiyan, M., Wirth, J. S. & Saravanan, V. S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 70, 5926–5936 (2020).

  • Schauer, B. et al. Diversity of methicillin-resistant coagulase-negative Staphylococcus spp. and methicillin-resistant Mammaliicoccus spp. isolated from ruminants and New World camelids. Vet. Microbiol. 254, 109005 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nemeghaire, S. et al. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet. Microbiol. 171, 342–356 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, R. S., Lo, B. & Son, J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front. Microbiol. 9, 67 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Sleen, P. & Albert, J. S. Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. (Princeton University Press, 2018).

  • Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: Challenges and prospects. Proc. Natl. Acad. Sci. USA 118, e2104429118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, G. M. et al. Physiology of mycobacteria. Adv. Microb. Physiol. 55(81–182), 318–189 (2009).


    Google Scholar
     

  • Kandi, V. et al. Emerging bacterial infection: Identification and clinical significance of Kocuria species. Cureus 8, e731 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolmann, M. A. et al. Phylogenomics of Piranhas and Pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst. Biol. 70, 576–592 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Y. et al. The relationships between the free-living and particle-attached bacterial communities in response to elevated eutrophication. Front. Microbiol. 11, 9 (2020).

    Article 

    Google Scholar
     

  • Pfister, C. A. et al. Conceptual exchanges for understanding free-living and host-associated microbiomes. mSystems 7, e0137421 (2022).

  • Park, J. et al. Siderophore production and utilization by marine bacteria in the North Pacific Ocean. Limnol. Oceanogr. 68, 1636–1653 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Spiga, L. et al. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 31, 1639-1654.e1610 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Quero, G. M. et al. Host-associated and environmental microbiomes in an open-sea Mediterranean gilthead sea bream fish farm. Microb. Ecol. (2022).

  • Kumar, V. et al. Microbial inoculums improve growth and health of Heteropneustes fossilis via biofloc-driven aquaculture. Microb. Cell Factor. 22, 106 (2023).

    Article 

    Google Scholar
     

  • Loh, J. Y. & Ting, A. S. Y. Mining of Microbial Wealth and MetaGenomics. 161–182 (Springer Singapore, 2017).

  • Silva, S. D. et al. Aeromonas allosaccharophila strain AE59-TE2 is highly antagonistic towards multidrug-resistant human pathogens, what does its genome tell us?. Life 12, 1492 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Albarano, L., Esposito, R., Ruocco, N. & Costantini, M. Genome mining as new challenge in natural products discovery. Mar. Drugs 18, 124 (2020).

    Article 

    Google Scholar
     

  • Yee, D. A. et al. Genome mining for unknown–unknown natural products. Nat. Chem. Biol. 19, 633–640 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of “omics” in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ayling, M., Clark, M. D. & Leggett, R. M. New approaches for metagenome assembly with short reads. Brief. Bioinform. 21, 584–594 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, G. G. Z., Lopes, F. A. C. & Edwards, R. A. Protein Function Prediction: Methods and Protocols (ed. Kihara, D.). 35–44 (Springer, 2017).

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oksanen, J. S. G. et al. vegan: Community Ecology Package (2023).

  • Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. In Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2. 1–189 (2016).

  • Gao, C.-H., Yu, G. & Cai, P. ggVennDiagram: An intuitive, easy-to-use, and highly customizable R package to generate Venn diagram. Front. Genet. 12, 130 (2021).

    Article 

    Google Scholar
     

  • Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35, 421–432 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar