The Motility Ratio method as a novel approach to qualify semen assessment

  • Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 81, 5–17 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Brito, L. F. C. A multilaboratory study on the variability of bovine semen analysis. Theriogenology 85, 254–266 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Gloria, A. et al. The effect of the chamber on kinetic results in cryopreserved bull spermatozoa. Andrology 1, 879–885 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoogewijs, M. K. et al. Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine Vet. J. 44, 542–549 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomlinson, M., Turner, J., Powell, G. & Sakkas, D. One-step disposable chambers for sperm concentration and motility assessment: how do they compare with the World Health Organization’s recommended methods?. Hum. Reprod. 16, 121–124 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenz, R. W., Kjelland, M. E., VonderHaar, K., Swannack, T. M. & Moreno, J. F. A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer1. J. Anim. Sci. 89, 383–388 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Contri, A., Valorz, C., Faustini, M., Wegher, L. & Carluccio, A. Effect of semen preparation on CASA motility results in cryopreserved bull spermatozoa. Theriogenology 74, 424–435 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ibănescu, I. et al. Differences in CASA output according to the chamber type when analyzing frozen-thawed bull sperm. Anim. Reprod. Sci. 166, 72–79 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bompart, D. et al. Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Anim. Reprod. Sci. 209, 106169 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Douglas-Hamilton, D. H., Smith, N. G., Kuster, C. E., Vermeiden, J. P. W. & Althouse, G. C. Capillary-loaded particle fluid dynamics: effect on estimation of sperm concentration. J. Androl. (2005).

  • Douglas-Hamilton, D. H., Smith, N. G., Kuster, C. E., Vermeiden, J. P. W. & Althouse, G. C. particle distribution in low-volume capillary-loaded chambers. J. Androl. 26, 107–114 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Gączarzewicz, D. Influence of chamber type integrated with computer-assisted semen analysis (CASA) system on the results of boar semen evaluation. Pol. J. Vet. Sci. 18, 817–824 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Šimoník, O. et al. Computer assisted sperm analysis – The relationship to bull field fertility, possible errors and their impact on outputs: A review. Indian J. Anim. Sci. 85, 3–11 (2014).


    Google Scholar
     

  • Broekhuijse, M. L. W. J., Šoštarić, E., Feitsma, H. & Gadella, B. M. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 76, 1473-1486.e1 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Meara, C. et al. The effect of adjusting settings within a Computer-Assisted Sperm Analysis (CASA) system on bovine sperm motility and morphology results. Anim. Reprod. 19, e20210077.

  • Tejerina, F., Buranaamnuay, K., Saravia, F., Wallgren, M. & Rodriguez-Martinez, H. Assessment of motility of ejaculated, liquid-stored boar spermatozoa using computerized instruments. Theriogenology 69, 1129–1138 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoque, A., Maoya, Z., Islam, M. & Juyena, N. Morphometric assessment of bull spermatozoa with HT- IVOS II. Anim. Reprod. Sci. 220, 106386 (2020).

    Article 

    Google Scholar
     

  • Ehlers, J., Behr, M., Bollwein, H., Beyerbach, M. & Waberski, D. Standardization of computer-assisted semen analysis using an e-learning application. Theriogenology 76, 448–454 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michos, I. A., Μπασιουρα, A., Boscos, C. & Tsakmakidis, I. Proper use and impact of ‘Computer Assisted Semen Analysis’ technique on semen evaluation of farm animals. J. Hell. Vet. Med. Soc. 64, 267 (2017).

    Article 

    Google Scholar
     

  • Moussa, M., Martinet, V., Trimeche, A., Tainturier, D. & Anton, M. Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen–thawed bull semen. Theriogenology 57, 1695–1706 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raad, G. et al. Cryopreservation media differentially affect sperm motility, morphology and DNA integrity. Andrology 6, 836–845 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, S. C. & England, G. C. Effect of technical settings and semen handling upon motility characteristics of dog spermatozoa measured using computer-aided sperm analysis. J. Reprod. Fertil. Suppl. 57, 151–159 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirai, M. et al. The effect of viscosity of semen diluents on motility of bull spermatozoa. Theriogenology 47, 1463–1478 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Víquez, L., Barquero, V., Soler, C., Roldan, E. R. S. & Valverde, A. Kinematic sub-populations in bull spermatozoa: A comparison of classical and Bayesian approaches. Biology 9, 138 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Víquez, L. et al. Morphometric assessment of cryopreserved livestock bull spermatozoa in the tropics. Reprod. Domest. Anim. 58, 1439–1447 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Iguer-ouada, M. & Verstegen, J. P. Evaluation of the “Hamilton Thorn computer-based automated system” for dog semen analysis. Theriogenology 55, 733–749 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prathalingam, N. S., Holt, W. W., Revell, S. G., Jones, S. & Watson, P. F. The precision and accuracy of six different methods to determine sperm concentration. J. Androl. 27, 257–262 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Rijsselaere, T., Van Soom, A., Maes, D. & de Kruif, A. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60, 1553–1568 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. https://apps.who.int/iris/handle/10665/44261 (2010).

  • Hansen, C. et al. Comparison of FACSCount AF system, Improved Neubauer hemocytometer, Corning 254 photometer, SpermVision, UltiMate and NucleoCounter SP-100 for determination of sperm concentration of boar semen. Theriogenology 66, 2188–2194 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moraes, C. R., Runcan, E. E., Blawut, B. & Coutinho da Silva, M. A. Technical Note: The use of iSperm technology for on-farm measurement of equine sperm motility and concentration. Transl. Anim. Sci. 3, 1513–1520 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finelli, R., Leisegang, K., Tumallapalli, S., Henkel, R. & Agarwal, A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Transl. Androl. Urol. 10, 3069 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rispoli, L. A. & Roth, T. L. Validation of the iSperm for assessing rhinoceros Sperm. Theriogenol. Wild 3, 100048 (2023).

    Article 

    Google Scholar
     

  • Park, M. J., Lim, M. Y., Park, H. J. & Park, N. C. Accuracy comparison study of new smartphone-based semen analyzer versus laboratory sperm quality analyzer. Investig. Clin. Urol. 62, 672–680 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baştan, İ. Comparison of computer-assisted sperm analysis and smartphone-applied sperm analysis for evaluation of frozen-thawed bull semen. Reprod. Domest. Anim. Zuchthyg. 59, e14695 (2024).

    Article 

    Google Scholar
     

  • Sevilla, F. et al. Are there differences between methods used for the objective estimation of boar sperm concentration and motility?. Animals 13, 1622 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheon, W. H. et al. Validation of a smartphone-based, computer-assisted sperm analysis system compared with laboratory-based manual microscopic semen analysis and computer-assisted semen analysis. Investig. Clin. Urol. 60, 380–387 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lammers, J., Splingart, C., Barrière, P., Jean, M. & Fréour, T. Double-blind prospective study comparing two automated sperm analyzers versus manual semen assessment. J. Assist. Reprod. Genet. 31, 35–43 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A. et al. Home sperm testing device versus laboratory sperm quality analyzer: Comparison of motile sperm concentration. Fertil. Steril. 110, 1277–1284 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Engel, K. M., Grunewald, S., Schiller, J. & Paasch, U. Automated semen analysis by SQA Vision® versus the manual approach—A prospective double-blind study. Andrologia https://doi.org/10.1111/and.13149 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Akashi, T., Watanabe, A., Komiya, A. & Fuse, H. Evaluation of the sperm motility analyzer system (SMAS) for the assessment of sperm quality in infertile men. 56, 473–477 (2010).

  • Schulze, M. et al. Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Anim. Reprod. Sci. 140, 70–76 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gadea, J. Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 63, 431–444 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sellem, E. et al. Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenology 84, 1447–1454 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broekhuijse, M. L. W. J., Šoštarić, E., Feitsma, H. & Gadella, B. M. Application of computer-assisted semen analysis to explain variations in pig fertility1. J. Anim. Sci. 90, 779–789 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Didion, B. A. Computer-assisted semen analysis and its utility for profiling boar semen samples. Theriogenology 70, 1374–1376 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quintero-Moreno, A., Rigau, T. & Rodrı́guez-Gil, J. E. Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61, 673–690 (2004).

  • Regulation (EU) 2016/ 1012 of the European Parliament and the Council. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1012 (2016).

  • European Directive (EU) 2023/647. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0647.

  • PIC North America. Boar Stud Management Manual | English. (2023).

  • Schenk, J. L. Review: Principles of maximizing bull semen production at genetic centers. Animal 12, s142–s147 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • UNCEIA. Repro Guide, Les connaissances et les conseils indispensables pour améliorer la fertilité dans les élevages. (2010).

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (2021).

  • Fair, S. & Romero-Aguirregomezcorta, J. Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology 137, 15–22 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Vázquez, F. A. Artificial intelligence and porcine breeding. Anim. Reprod. Sci. 107538 (2024) https://doi.org/10.1016/j.anireprosci.2024.107538.