The ethical landscape of human brain organoids and a mindful innovation framework – Nature Reviews Bioengineering

  • Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article 

    Google Scholar
     

  • Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article 

    Google Scholar
     

  • Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).

    Article 

    Google Scholar
     

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article 

    Google Scholar
     

  • Ding, L., Xiao, Z., Gong, X. & Peng, Y. Knowledge graphs of ethical concerns of cerebral organoids. Cell Prolif. 55, e13239 (2022).

    Article 

    Google Scholar
     

  • Koo, B., Choi, B., Park, H. & Yoon, K.-J. Past, present, and future of brain organoid technology. Mol. Cells 42, 617–627 (2019).


    Google Scholar
     

  • Chiaradia, I. & Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496–1508 (2020).

    Article 

    Google Scholar
     

  • Amin, N. D. & Paşca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).

    Article 

    Google Scholar
     

  • Xu, H. et al. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp. Hematol. Oncol. 7, 30 (2018).

    Article 

    Google Scholar
     

  • Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article 

    Google Scholar
     

  • Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article 

    Google Scholar
     

  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article 

    Google Scholar
     

  • Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article 

    Google Scholar
     

  • Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article 

    Google Scholar
     

  • Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).

    Article 

    Google Scholar
     

  • Krieger, T. G. et al. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro Oncol. 22, 1138–1149 (2020).

    Article 

    Google Scholar
     

  • Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 16, 579–602 (2021).

    Article 

    Google Scholar
     

  • Su, X. et al. Human brain organoids as an in vitro model system of viral infectious diseases. Front. Immunol. 12, 5837 (2022).

    Article 

    Google Scholar
     

  • Tang, X.-Y. et al. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 7, 168 (2022).

    Article 

    Google Scholar
     

  • Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article 

    Google Scholar
     

  • Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781.e9 (2020).

    Article 

    Google Scholar
     

  • Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).

    Article 

    Google Scholar
     

  • Nieto-Estévez, V. & Hsieh, J. Human brain organoid models of developmental epilepsies. Epilepsy Curr. 20, 282–290 (2020).

    Article 

    Google Scholar
     

  • Jgamadze, D. et al. Modeling traumatic brain injury with human brain organoids. Curr. Opin. Biomed. Eng. 14, 52–58 (2020).

    Article 

    Google Scholar
     

  • Pellegrini, L. et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 27, 951–961.e5 (2020).

    Article 

    Google Scholar
     

  • Paşca, S. P. Assembling human brain organoids. Science 363, 126–127 (2019).

    Article 

    Google Scholar
     

  • Pașca, S. P. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 609, 907–910 (2022).

    Article 

    Google Scholar
     

  • Marton, R. M. & Pașca, S. P. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 30, 133–143 (2020).

    Article 

    Google Scholar
     

  • Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Cerebral organoids transplantation improves neurological motor function in rat brain injury. CNS Neurosci. Ther. 26, 682–697 (2020).

    Article 

    Google Scholar
     

  • Stilgoe, J., Owen, R. & Macnaghten, P. in The Ethics of Nanotechnology, Geoengineering and Clean Energy (eds Maynard, A. & Stilgoe, J.) Ch. 19 (Routledge, 2020).

  • Evans, J. H. The public’s ethical issues with brain organoid research and application. AJOB Neurosci. 13, 101–103 (2022).

    Article 

    Google Scholar
     

  • Evans, J. H. Disembodied Brains: Understanding our Intuitions on Human-Animal Neuro-Chimeras and Human Brain Organoids (Oxford Univ. Press, 2024).

  • Haselager, D. R. et al. Breeding brains? Patients’ and laymen’s perspectives on cerebral organoids. Regen. Med. 15, 2351–2360 (2020).

    Article 

    Google Scholar
     

  • Bollinger, J., May, E., Mathews, D., Donowitz, M. & Sugarman, J. Patients’ perspectives on the derivation and use of organoids. Stem Cell Rep. 16, 1874–1883 (2021).

    Article 

    Google Scholar
     

  • Presley, A., Samsa, L. A. & Dubljević, V. Media portrayal of ethical and social issues in brain organoid research. Philos. Ethics Humanit. Med. 17, 8 (2022).

    Article 

    Google Scholar
     

  • Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).

    Article 

    Google Scholar
     

  • Shlobin, N. A., Sheldon, M. & Lam, S. Informed consent in neurosurgery: a systematic review. Neurosurg. Focus 49, E6 (2020).

    Article 

    Google Scholar
     

  • Bredenoord, A. L., Clevers, H. & Knoblich, J. A. Human tissues in a dish: the research and ethical implications of organoid technology. Science 355, eaaf9414 (2017).

    Article 

    Google Scholar
     

  • de Jongh, D., Massey, E. K. & Bunnik, E. M. Organoids: a systematic review of ethical issues. Stem Cell Res. Ther. 13, 337 (2022).

    Article 

    Google Scholar
     

  • Gordon, E. J. & Prohaska, T. R. The ethics of withdrawal from study participation. Account. Res. 13, 285–309 (2006).

    Article 

    Google Scholar
     

  • Schleiter, K. E. Donors retain no rights to donated tissue. AMA J. Ethics 11, 621–625 (2009).

    Article 

    Google Scholar
     

  • Hakimian, R. & Korn, D. Ownership and use of tissue specimens for research. JAMA 292, 2500–2505 (2004).

    Article 

    Google Scholar
     

  • Boers, S. N., van Delden, J. J., Clevers, H. & Bredenoord, A. L. Organoid biobanking: identifying the ethics: organoids revive old and raise new ethical challenges for basic research and therapeutic use. EMBO Rep. 17, 938–941 (2016).

    Article 

    Google Scholar
     

  • Eiseman, E., Bloom, G., Brower, J., Clancy, N. & Olmsted, S. S. Case Studies of Existing Human Tissue Repositories:Best Practices” for a Biospecimen Resource for the Genomic and Proteomic Era (RAND Corporation, 2003).

  • Budin-Ljøsne, I. et al. Dynamic consent: a potential solution to some of the challenges of modern biomedical research. BMC Med. Ethics 18, 4 (2017).

    Article 

    Google Scholar
     

  • Boers, S. N. & Bredenoord, A. L. Consent for governance in the ethical use of organoids. Nat. Cell Biol. 20, 642–645 (2018).

    Article 

    Google Scholar
     

  • Li, Y., Tang, P., Cai, S., Peng, J. & Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regen. 9, 21 (2020).

    Article 

    Google Scholar
     

  • Lee, H., Im, J. S., Choi, D. B. & Woo, D.-H. Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids. Organoid 1, e11 (2021).

    Article 

    Google Scholar
     

  • Mollaki, V. Ethical challenges in organoid use. BioTech 10, 12 (2021).

    Article 

    Google Scholar
     

  • Grimwade, O. et al. Payment in challenge studies: ethics, attitudes and a new payment for risk model. J. Med. Ethics 46, 815–826 (2020).

    Article 

    Google Scholar
     

  • Boers, S. N., van Delden, J. J. & Bredenoord, A. L. Organoids as hybrids: ethical implications for the exchange of human tissues. J. Med. Ethics 45, 131–139 (2019).

    Article 

    Google Scholar
     

  • Warren, M. A. Moral Status: Obligations to Persons and Other Living Things (Clarendon Press, 1997).

  • Lavazza, A. Potential ethical problems with human cerebral organoids: consciousness and moral status of future brains in a dish. Brain Res. 1750, 147146 (2021).

    Article 

    Google Scholar
     

  • Liao, S. M. in Ethics and Moral Philosophy (ed. Brooks, T.) 335–356 (Brill, 2011).

  • Lavazza, A. Human cerebral organoids and consciousness: a double-edged sword. Monash Bioeth. Rev. 38, 105–128 (2020).

    Article 

    Google Scholar
     

  • Warnock, M. Report of the Committee of Inquiry into Human Fertilisation and Embryology (His Majesty’s Stationery Office, 1984).

  • Aach, J., Lunshof, J., Iyer, E. & Church, G. M. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 6, e20674 (2017).

    Article 

    Google Scholar
     

  • Koplin, J. J. & Savulescu, J. Moral limits of brain organoid research. J. Law Med. Ethics 47, 760–767 (2019).

    Article 

    Google Scholar
     

  • Cheshire, W. P. Jr Cerebral organoids and the threshold of consciousness. Ethics Med. 36, 27–35 (2020).


    Google Scholar
     

  • Lavazza, A. & Chinaia, A. A. Human cerebral organoids: the ethical stance of scientists. Stem Cell Res. Ther. 14, 59 (2023).

    Article 

    Google Scholar
     

  • Jeziorski, J. et al. Brain organoids, consciousness, ethics and moral status. Semin. Cell Dev. Biol. 144, 97–102 (2023).

    Article 

    Google Scholar
     

  • Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article 

    Google Scholar
     

  • Pichl, A. et al. Ethical, legal and social aspects of human cerebral organoids and their governance in Germany, the United Kingdom and the United States. Front. Cell Dev. Biol. 11, 1194706 (2023).

    Article 

    Google Scholar
     

  • Diner, S. & Gaillard, M. Searching for consciousness in unfamiliar entities: the need for both systematic investigation and imagination. AJOB Neurosci. 14, 202–204 (2023).

    Article 

    Google Scholar
     

  • Pennartz, C., Farisco, M. & Evers, K. Indicators and criteria of consciousness in animals and intelligent machines: an inside-out approach. Front. Syst. Neurosci. 13, 25 (2019).

    Article 

    Google Scholar
     

  • Grandy, J. K. The three neurogenetic phases of human consciousness. J. Conscious Evol. 9, 4 (2018).


    Google Scholar
     

  • Posner, M. I. Genes and experience shape brain networks of conscious control. Prog. Brain Res. 150, 173–183 (2005).

    Article 

    Google Scholar
     

  • Kreitmair, K. Consciousness and the ethics of human brain organoid research. Camb. Q. Healthc. Ethics 32, 1–11 (2023).

    Article 

    Google Scholar
     

  • Boyd, J. L. & Lipshitz, N. Dimensions of consciousness and the moral status of brain organoids. Neuroethics 17, 5 (2024).

    Article 

    Google Scholar
     

  • Koplin, J. J. Response to the ISSCR guidelines on human–animal chimera research. Bioethics 37, 192–198 (2023).

    Article 

    Google Scholar
     

  • Chen, H. I. et al. Transplantation of human brain organoids: revisiting the science and ethics of brain chimeras. Cell Stem Cell 25, 462–472 (2019).

    Article 

    Google Scholar
     

  • Carvalho, C., Gaspar, A., Knight, A. & Vicente, L. Ethical and scientific pitfalls concerning laboratory research with non-human primates, and possible solutions. Animals 9, 12 (2019).

    Article 

    Google Scholar
     

  • Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen, 1959).

  • Beauchamp, T. L. & DeGrazia, D. Principles of Animal Research Ethics (Oxford Univ. Press, 2020).

  • Barnhart, A. J. & Dierickx, K. A. A tale of two chimeras: applying the six principles to human brain organoid xenotransplantation. Camb. Q. Healthc. Ethics 32, 1–17 (2023).

    Article 

    Google Scholar
     

  • Hyun, I., Scharf-Deering, J. & Lunshof, J. E. Ethical issues related to brain organoid research. Brain Res. 1732, 146653 (2020).

    Article 

    Google Scholar
     

  • Birch, J. & Browning, H. Neural organoids and the precautionary principle. Am. J. Bioeth. 21, 56–58 (2021).

    Article 

    Google Scholar
     

  • Gillon, R. Medical ethics: four principles plus attention to scope. BMJ 309, 184–188 (1994).

    Article 

    Google Scholar
     

  • Dresser, R. Stem cell research as innovation: expanding the ethical and policy conversation. J. Law Med. Ethics 38, 332–341 (2010).

    Article 

    Google Scholar
     

  • Zushin, P.-J. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Investig. 133, e175824 (2023).

    Article 

    Google Scholar
     

  • Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 31, 105–112 (2009).

    Article 

    Google Scholar
     

  • Beck, M. & Krueger, T. The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling. Wiley Interdiscip. Rev. Clim. Change 7, 627–645 (2016).

    Article 

    Google Scholar
     

  • Binder, E. et al. Hirnorganoide–Modellsysteme des menschlichen Gehirns (Deutsche Akademie der Naturforscher Leopoldina, 2022).

  • Harvey, A. & Salter, B. Anticipatory governance: bioethical expertise for human/animal chimeras. Sci. Cult. 21, 291–313 (2012).

    Article 

    Google Scholar
     

  • Agich, G. J. Ethics and innovation in medicine. J. Med. Ethics 27, 295–296 (2001).

    Article 

    Google Scholar
     

  • von Schomberg, R. in Technikfolgen Abschätzen Lehren: Bildungspotenziale Transdisziplinärer Methoden (eds Dusseldorp, M. & Beecroft, R.) 39–61 (VS Verlag für Sozialwissenschaften, 2012).

  • Owen, R., von Schomberg, R. & Macnaghten, P. An unfinished journey? Reflections on a decade of responsible research and innovation. J. Responsible Innov. 8, 217–233 (2021).

    Article 

    Google Scholar
     

  • Burget, M., Bardone, E. & Pedaste, M. Definitions and conceptual dimensions of responsible research and innovation: a literature review. Sci. Eng. Ethics 23, 1–19 (2017).

    Article 

    Google Scholar
     

  • Özdemir, V. in International Handbook on Responsible Innovation (eds von Schomberg, R. & Hankins, J.) 70–82 (Edward Elgar, 2019).

  • Shoji, J. Y., Davis, R. P., Mummery, C. L. & Krauss, S. Global meta‐analysis of organoid and organ‐on‐chip research. Adv. Healthc. Mater. e2301067 (2023).

  • Yui, H. et al. Comparison of the 2021 International Society for Stem Cell Research (ISSCR) guidelines for “laboratory-based human stem cell research, embryo research, and related research activities” and the corresponding Japanese regulations. Regen. Ther. 21, 46–51 (2022).

    Article 

    Google Scholar
     

  • Guidelines for Stem Cell Research and Clinical Translation. (International Society for Stem Cell Research, 2022).

  • Redinbaugh, M. J. et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron 106, 66–75.e12 (2020).

    Article 

    Google Scholar
     

  • Wu, H. et al. Anterior precuneus related to the recovery of consciousness. Neuroimage Clin. 33, 102951 (2022).

    Article 

    Google Scholar
     

  • Gazzaniga, M. S. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123, 1293–1326 (2000).

    Article 

    Google Scholar
     

  • Yeo, S. S., Chang, P. H. & Jang, S. H. The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain. Front. Hum. Neurosci. 7, 416 (2013).

    Article 

    Google Scholar
     

  • Qin, P. et al. How are different neural networks related to consciousness? Ann. Neurol. 78, 594–605 (2015).

    Article 

    Google Scholar
     

  • Zhao, T. et al. Consciousness: new concepts and neural networks. Front. Cell. Neurosci. 13, 302 (2019).

    Article 

    Google Scholar
     

  • Brown, B. B. Recognition of aspects of consciousness through association with EEG alpha activity represented by a light signal. Psychophysiology 6, 442–452 (1970).

    Article 

    Google Scholar
     

  • Fell, J., Axmacher, N. & Haupt, S. From alpha to gamma: electrophysiological correlates of meditation-related states of consciousness. Med. Hypotheses 75, 218–224 (2010).

    Article 

    Google Scholar
     

  • He, B. J. & Raichle, M. E. The fMRI signal, slow cortical potential and consciousness. Trends Cogn. Sci. 13, 302–309 (2009).

    Article 

    Google Scholar
     

  • Birch, J., Schnell, A. K. & Clayton, N. S. Dimensions of animal consciousness. Trends Cogn. Sci. 24, 789–801 (2020).

    Article 

    Google Scholar
     

  • Westra, E. & Carruthers, P. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. & Weekes-Shackelford, V. A.) 71–76 (Springer, 2018).

  • Kano, F., Krupenye, C., Hirata, S., Tomonaga, M. & Call, J. Great apes use self-experience to anticipate an agent’s action in a false-belief test. Proc. Natl Acad. Sci. USA 116, 20904–20909 (2019).

    Article 

    Google Scholar
     

  • Droege, P., Weiss, D. J., Schwob, N. & Braithwaite, V. Trace conditioning as a test for animal consciousness: a new approach. Anim. Cogn. 24, 1299–1304 (2021).

    Article 

    Google Scholar
     

  • Zlomuzica, A. & Dere, E. Towards an animal model of consciousness based on the platform theory. Behav. Brain Res. 419, 113695 (2022).

    Article 

    Google Scholar