Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).
Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).
Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).
Ding, L., Xiao, Z., Gong, X. & Peng, Y. Knowledge graphs of ethical concerns of cerebral organoids. Cell Prolif. 55, e13239 (2022).
Koo, B., Choi, B., Park, H. & Yoon, K.-J. Past, present, and future of brain organoid technology. Mol. Cells 42, 617–627 (2019).
Chiaradia, I. & Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496–1508 (2020).
Amin, N. D. & Paşca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).
Xu, H. et al. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp. Hematol. Oncol. 7, 30 (2018).
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).
Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).
Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).
Krieger, T. G. et al. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro Oncol. 22, 1138–1149 (2020).
Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 16, 579–602 (2021).
Su, X. et al. Human brain organoids as an in vitro model system of viral infectious diseases. Front. Immunol. 12, 5837 (2022).
Tang, X.-Y. et al. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 7, 168 (2022).
Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).
Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781.e9 (2020).
Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).
Nieto-Estévez, V. & Hsieh, J. Human brain organoid models of developmental epilepsies. Epilepsy Curr. 20, 282–290 (2020).
Jgamadze, D. et al. Modeling traumatic brain injury with human brain organoids. Curr. Opin. Biomed. Eng. 14, 52–58 (2020).
Pellegrini, L. et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 27, 951–961.e5 (2020).
Paşca, S. P. Assembling human brain organoids. Science 363, 126–127 (2019).
Pașca, S. P. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 609, 907–910 (2022).
Marton, R. M. & Pașca, S. P. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 30, 133–143 (2020).
Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).
Wang, Z. et al. Cerebral organoids transplantation improves neurological motor function in rat brain injury. CNS Neurosci. Ther. 26, 682–697 (2020).
Stilgoe, J., Owen, R. & Macnaghten, P. in The Ethics of Nanotechnology, Geoengineering and Clean Energy (eds Maynard, A. & Stilgoe, J.) Ch. 19 (Routledge, 2020).
Evans, J. H. The public’s ethical issues with brain organoid research and application. AJOB Neurosci. 13, 101–103 (2022).
Evans, J. H. Disembodied Brains: Understanding our Intuitions on Human-Animal Neuro-Chimeras and Human Brain Organoids (Oxford Univ. Press, 2024).
Haselager, D. R. et al. Breeding brains? Patients’ and laymen’s perspectives on cerebral organoids. Regen. Med. 15, 2351–2360 (2020).
Bollinger, J., May, E., Mathews, D., Donowitz, M. & Sugarman, J. Patients’ perspectives on the derivation and use of organoids. Stem Cell Rep. 16, 1874–1883 (2021).
Presley, A., Samsa, L. A. & Dubljević, V. Media portrayal of ethical and social issues in brain organoid research. Philos. Ethics Humanit. Med. 17, 8 (2022).
Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).
Shlobin, N. A., Sheldon, M. & Lam, S. Informed consent in neurosurgery: a systematic review. Neurosurg. Focus 49, E6 (2020).
Bredenoord, A. L., Clevers, H. & Knoblich, J. A. Human tissues in a dish: the research and ethical implications of organoid technology. Science 355, eaaf9414 (2017).
de Jongh, D., Massey, E. K. & Bunnik, E. M. Organoids: a systematic review of ethical issues. Stem Cell Res. Ther. 13, 337 (2022).
Gordon, E. J. & Prohaska, T. R. The ethics of withdrawal from study participation. Account. Res. 13, 285–309 (2006).
Schleiter, K. E. Donors retain no rights to donated tissue. AMA J. Ethics 11, 621–625 (2009).
Hakimian, R. & Korn, D. Ownership and use of tissue specimens for research. JAMA 292, 2500–2505 (2004).
Boers, S. N., van Delden, J. J., Clevers, H. & Bredenoord, A. L. Organoid biobanking: identifying the ethics: organoids revive old and raise new ethical challenges for basic research and therapeutic use. EMBO Rep. 17, 938–941 (2016).
Eiseman, E., Bloom, G., Brower, J., Clancy, N. & Olmsted, S. S. Case Studies of Existing Human Tissue Repositories: “Best Practices” for a Biospecimen Resource for the Genomic and Proteomic Era (RAND Corporation, 2003).
Budin-Ljøsne, I. et al. Dynamic consent: a potential solution to some of the challenges of modern biomedical research. BMC Med. Ethics 18, 4 (2017).
Boers, S. N. & Bredenoord, A. L. Consent for governance in the ethical use of organoids. Nat. Cell Biol. 20, 642–645 (2018).
Li, Y., Tang, P., Cai, S., Peng, J. & Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regen. 9, 21 (2020).
Lee, H., Im, J. S., Choi, D. B. & Woo, D.-H. Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids. Organoid 1, e11 (2021).
Mollaki, V. Ethical challenges in organoid use. BioTech 10, 12 (2021).
Grimwade, O. et al. Payment in challenge studies: ethics, attitudes and a new payment for risk model. J. Med. Ethics 46, 815–826 (2020).
Boers, S. N., van Delden, J. J. & Bredenoord, A. L. Organoids as hybrids: ethical implications for the exchange of human tissues. J. Med. Ethics 45, 131–139 (2019).
Warren, M. A. Moral Status: Obligations to Persons and Other Living Things (Clarendon Press, 1997).
Lavazza, A. Potential ethical problems with human cerebral organoids: consciousness and moral status of future brains in a dish. Brain Res. 1750, 147146 (2021).
Liao, S. M. in Ethics and Moral Philosophy (ed. Brooks, T.) 335–356 (Brill, 2011).
Lavazza, A. Human cerebral organoids and consciousness: a double-edged sword. Monash Bioeth. Rev. 38, 105–128 (2020).
Warnock, M. Report of the Committee of Inquiry into Human Fertilisation and Embryology (His Majesty’s Stationery Office, 1984).
Aach, J., Lunshof, J., Iyer, E. & Church, G. M. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 6, e20674 (2017).
Koplin, J. J. & Savulescu, J. Moral limits of brain organoid research. J. Law Med. Ethics 47, 760–767 (2019).
Cheshire, W. P. Jr Cerebral organoids and the threshold of consciousness. Ethics Med. 36, 27–35 (2020).
Lavazza, A. & Chinaia, A. A. Human cerebral organoids: the ethical stance of scientists. Stem Cell Res. Ther. 14, 59 (2023).
Jeziorski, J. et al. Brain organoids, consciousness, ethics and moral status. Semin. Cell Dev. Biol. 144, 97–102 (2023).
Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).
Pichl, A. et al. Ethical, legal and social aspects of human cerebral organoids and their governance in Germany, the United Kingdom and the United States. Front. Cell Dev. Biol. 11, 1194706 (2023).
Diner, S. & Gaillard, M. Searching for consciousness in unfamiliar entities: the need for both systematic investigation and imagination. AJOB Neurosci. 14, 202–204 (2023).
Pennartz, C., Farisco, M. & Evers, K. Indicators and criteria of consciousness in animals and intelligent machines: an inside-out approach. Front. Syst. Neurosci. 13, 25 (2019).
Grandy, J. K. The three neurogenetic phases of human consciousness. J. Conscious Evol. 9, 4 (2018).
Posner, M. I. Genes and experience shape brain networks of conscious control. Prog. Brain Res. 150, 173–183 (2005).
Kreitmair, K. Consciousness and the ethics of human brain organoid research. Camb. Q. Healthc. Ethics 32, 1–11 (2023).
Boyd, J. L. & Lipshitz, N. Dimensions of consciousness and the moral status of brain organoids. Neuroethics 17, 5 (2024).
Koplin, J. J. Response to the ISSCR guidelines on human–animal chimera research. Bioethics 37, 192–198 (2023).
Chen, H. I. et al. Transplantation of human brain organoids: revisiting the science and ethics of brain chimeras. Cell Stem Cell 25, 462–472 (2019).
Carvalho, C., Gaspar, A., Knight, A. & Vicente, L. Ethical and scientific pitfalls concerning laboratory research with non-human primates, and possible solutions. Animals 9, 12 (2019).
Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen, 1959).
Beauchamp, T. L. & DeGrazia, D. Principles of Animal Research Ethics (Oxford Univ. Press, 2020).
Barnhart, A. J. & Dierickx, K. A. A tale of two chimeras: applying the six principles to human brain organoid xenotransplantation. Camb. Q. Healthc. Ethics 32, 1–17 (2023).
Hyun, I., Scharf-Deering, J. & Lunshof, J. E. Ethical issues related to brain organoid research. Brain Res. 1732, 146653 (2020).
Birch, J. & Browning, H. Neural organoids and the precautionary principle. Am. J. Bioeth. 21, 56–58 (2021).
Gillon, R. Medical ethics: four principles plus attention to scope. BMJ 309, 184–188 (1994).
Dresser, R. Stem cell research as innovation: expanding the ethical and policy conversation. J. Law Med. Ethics 38, 332–341 (2010).
Zushin, P.-J. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Investig. 133, e175824 (2023).
Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 31, 105–112 (2009).
Beck, M. & Krueger, T. The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling. Wiley Interdiscip. Rev. Clim. Change 7, 627–645 (2016).
Binder, E. et al. Hirnorganoide–Modellsysteme des menschlichen Gehirns (Deutsche Akademie der Naturforscher Leopoldina, 2022).
Harvey, A. & Salter, B. Anticipatory governance: bioethical expertise for human/animal chimeras. Sci. Cult. 21, 291–313 (2012).
Agich, G. J. Ethics and innovation in medicine. J. Med. Ethics 27, 295–296 (2001).
von Schomberg, R. in Technikfolgen Abschätzen Lehren: Bildungspotenziale Transdisziplinärer Methoden (eds Dusseldorp, M. & Beecroft, R.) 39–61 (VS Verlag für Sozialwissenschaften, 2012).
Owen, R., von Schomberg, R. & Macnaghten, P. An unfinished journey? Reflections on a decade of responsible research and innovation. J. Responsible Innov. 8, 217–233 (2021).
Burget, M., Bardone, E. & Pedaste, M. Definitions and conceptual dimensions of responsible research and innovation: a literature review. Sci. Eng. Ethics 23, 1–19 (2017).
Özdemir, V. in International Handbook on Responsible Innovation (eds von Schomberg, R. & Hankins, J.) 70–82 (Edward Elgar, 2019).
Shoji, J. Y., Davis, R. P., Mummery, C. L. & Krauss, S. Global meta‐analysis of organoid and organ‐on‐chip research. Adv. Healthc. Mater. e2301067 (2023).
Yui, H. et al. Comparison of the 2021 International Society for Stem Cell Research (ISSCR) guidelines for “laboratory-based human stem cell research, embryo research, and related research activities” and the corresponding Japanese regulations. Regen. Ther. 21, 46–51 (2022).
Guidelines for Stem Cell Research and Clinical Translation. (International Society for Stem Cell Research, 2022).
Redinbaugh, M. J. et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron 106, 66–75.e12 (2020).
Wu, H. et al. Anterior precuneus related to the recovery of consciousness. Neuroimage Clin. 33, 102951 (2022).
Gazzaniga, M. S. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123, 1293–1326 (2000).
Yeo, S. S., Chang, P. H. & Jang, S. H. The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain. Front. Hum. Neurosci. 7, 416 (2013).
Qin, P. et al. How are different neural networks related to consciousness? Ann. Neurol. 78, 594–605 (2015).
Zhao, T. et al. Consciousness: new concepts and neural networks. Front. Cell. Neurosci. 13, 302 (2019).
Brown, B. B. Recognition of aspects of consciousness through association with EEG alpha activity represented by a light signal. Psychophysiology 6, 442–452 (1970).
Fell, J., Axmacher, N. & Haupt, S. From alpha to gamma: electrophysiological correlates of meditation-related states of consciousness. Med. Hypotheses 75, 218–224 (2010).
He, B. J. & Raichle, M. E. The fMRI signal, slow cortical potential and consciousness. Trends Cogn. Sci. 13, 302–309 (2009).
Birch, J., Schnell, A. K. & Clayton, N. S. Dimensions of animal consciousness. Trends Cogn. Sci. 24, 789–801 (2020).
Westra, E. & Carruthers, P. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. & Weekes-Shackelford, V. A.) 71–76 (Springer, 2018).
Kano, F., Krupenye, C., Hirata, S., Tomonaga, M. & Call, J. Great apes use self-experience to anticipate an agent’s action in a false-belief test. Proc. Natl Acad. Sci. USA 116, 20904–20909 (2019).
Droege, P., Weiss, D. J., Schwob, N. & Braithwaite, V. Trace conditioning as a test for animal consciousness: a new approach. Anim. Cogn. 24, 1299–1304 (2021).
Zlomuzica, A. & Dere, E. Towards an animal model of consciousness based on the platform theory. Behav. Brain Res. 419, 113695 (2022).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s44222-024-00211-3