The buzz about honey-based biosurveys – npj Biodiversity

  • Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Staveley, J. P., Law, S. A., Fairbrother, A. & Menzie, C. A. A causal analysis of observed declines in managed honey bees (Apis mellifera). Hum. Ecol. Risk Assess. 20, 566–591 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray, A. et al. Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: the combined effects of operation size, migration and queen replacement. J. Apicultural Res. 62, 204–210 (2023).

    Article 

    Google Scholar
     

  • Farina, W. M., Arenas, A., Díaz, P. C., Susic Martin, C. & Corriale, M. J. In-hive learning of specific mimic odours as a tool to enhance honey bee foraging and pollination activities in pear and apple crops. Sci. Rep. 12, 20510 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Genersch, E. Honey bee pathology: current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 87, 87–97 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • in NASDAQ OMX’s News Release Distribution Channel (New York, 2022).

  • Papa, G. et al. The honey bee Apis mellifera: an insect at the interface between human and ecosystem health. Biology 11, 233 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smutin, D., Lebedev, E., Selitskiy, M., Panyushev, N. & Adonin, L. Micro“bee“ota: honey bee normal microbiota as a part of superorganism. Microorganisms https://doi.org/10.3390/microorganisms10122359 (2022).

  • Galanis, A. et al. Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey. Mol. Ecol. Resour. 22, 2506–2523 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, K. E. et al. Honey as a biomonitor for a changing world. Nat. Sustain. 2, 223–232 (2019).

    Article 

    Google Scholar
     

  • Wirta, H., Abrego, N., Miller, K., Roslin, T. & Vesterinen, E. DNA traces the origin of honey by identifying plants, bacteria and fungi. Sci. Rep. 11, 4798 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cunningham, M. M. et al. Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecol. Indic. 134, 108457 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Soares, S., Rodrigues, F. & Delerue-Matos, C. Towards DNA-based methods analysis for honey: an update. Molecules 28, 2106 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascher, K., Švara, V. & Jungmeier, M. Environmental DNA-based methods in biodiversity monitoring of protected areas: application range, limitations, and needs. Diversity 14, 463 (2022).

    Article 

    Google Scholar
     

  • Rodríguez-Ezpeleta, N. et al. Biodiversity monitoring using environmental DNA. Mol. Ecol. Resour. 21, 1405–1409 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hassoon, I. M., Kassir, S. A. & Altaie, S. M. A review of plant species identification techniques. Int. J. Sci. Res. 7, 325–328 (2018).


    Google Scholar
     

  • Ohe, W. V. D., Oddo, L. P., Piana, M. L., Morlot, M. & Martin, P. Harmonized methods of melissopalynology. Apidologie 35, S18–S25 (2004).

    Article 

    Google Scholar
     

  • Friedheim, S. Comparison of species identification methods DNA barcoding versus morphological taxonomy. Mānoa Horiz. 1, 74–86 (2016).


    Google Scholar
     

  • Aldhebiani, A. Y. Species concept and speciation. Saudi J. Biol. Sci. 25, 437–440 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Islam, M. K. et al. An investigation of the suitability of melissopalynology to authenticate Jarrah honey. Curr. Res. Food Sci. 5, 506–514 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajmal Ali, M. et al. The changing epitome of species identification—DNA barcoding. Saudi J. Biol. Sci. 21, 204–231 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogler, A. P. & Monaghan, M. T. Recent advances in DNA taxonomy. J. Zool. Syst. Evolut. Res. 45, 1–10 (2007).

    Article 

    Google Scholar
     

  • Michael, W. in Birds (ed Mikkola H.) Ch. 1 (IntechOpen, 2021).

  • Pawlowski, J., Apothéloz-Perret-Gentil, L. & Altermatt, F. Environmental DNA: what’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 29, 4258–4264 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Garibyan, L. & Avashia, N. Polymerase chain reaction. J. Invest. Dermatol. 133, 1–4 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y.-X. et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rieder, J., Kapopoulou, A., Bank, C. & Adrian-Kalchhauser, I. Metagenomics and metabarcoding experimental choices and their impact on microbial community characterization in freshwater recirculating aquaculture systems. Environ. Microbiome 18, 8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, L. et al. Temporal patterns of honeybee foraging in a diverse floral landscape revealed using pollen DNA metabarcoding of honey. Integr. Comp. Biol. 62, 199–210 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).


    Google Scholar
     

  • Ratnasingham, S. & Hebert, P. D. N. bold: The Barcode of Life Data System. Mol. Ecol. Notes 7, 355–364, https://www.barcodinglife.org (2007).

  • Sayers, E. W. et al. GenBank 2023 update. Nucleic Acids Res. 51, D141–D144 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meiklejohn, K. A., Damaso, N. & Robertson, J. M. Assessment of BOLD and GenBank—their accuracy and reliability for the identification of biological materials. PLoS ONE 14, e0217084 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milla, L., Schmidt-Lebuhn, A., Bovill, J. & Encinas-Viso, F. Monitoring of honey bee floral resources with pollen DNA metabarcoding as a complementary tool to vegetation surveys. Ecol. Solut. Evid. 3, e12120 (2022).

    Article 

    Google Scholar
     

  • Keck, F., Couton, M. & Altermatt, F. Navigating the seven challenges of taxonomic reference databases in metabarcoding analyses. Mol. Ecol. Resour. 23, 742–755 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Daisley, B. A. & Reid, G. BEExact: a Metataxonomic Database Tool for High-Resolution Inference of Bee-Associated Microbial Communities. mSystems https://doi.org/10.1128/msystems.00082-00021 (2021).

  • Bharti, R. & Grimm, D. G. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinforma. 22, 178–193 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput. Struct. Biotechnol. J. 19, 6301–6314 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bovo, S., Utzeri, V. J., Ribani, A., Cabbri, R. & Fontanesi, L. Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci. Rep. 10, 9279 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, e0205575 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prudnikow, L., Pannicke, B. & Wünschiers, R. A primer on pollen assignment by nanopore-based DNA sequencing. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2023.1112929 (2023).

  • Liu, S. et al. Tracing the origin of honey products based on metagenomics and machine learning. Food Chem. 371, 131066 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohmann, K. et al. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol. Ecol. Resour. 22, 1231–1246 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Massana, R. & López-Escardó, D. Metagenome assembled genomes are for eukaryotes too. Cell Genomics 2, 100130 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mc Cartney, A. M. et al. Indigenous peoples and local communities as partners in the sequencing of global eukaryotic biodiversity. npj Biodivers. 2, 8 (2023).

    Article 

    Google Scholar
     

  • Peel, N. et al. Semi-quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods Ecol. Evolut. 10, 1690–1701 (2019).

    Article 

    Google Scholar
     

  • Saraiva, J. P., Bartholomäus, A., Toscan, R. B., Baldrian, P. & Nunes da Rocha, U. Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13776 (2023).

  • Patin, N. V. & Goodwin, K. D. Long-read sequencing improves recovery of picoeukaryotic genomes and zooplankton marker genes from marine metagenomes. mSystems 7, e00595–00522 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedersoo, L., Albertsen, M., Anslan, S. & Callahan, B. Perspectives and benefits of high-throughput long-read sequencing in microbial ecology. Appl. Environ. Microbiol. 87, e00626–00621 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanderson, K. Bioinformatics: curation generation. Nature 470, 295–296 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Odell, S. G., Lazo, G. R., Woodhouse, M. R., Hane, D. L. & Sen, T. Z. The art of curation at a biological database: principles and application. Curr. Plant Biol. 11-12, 2–11 (2017).

    Article 

    Google Scholar
     

  • Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kalayci, G. et al. The role of viral and parasitic pathogens affected by colony losses in Turkish apiaries. Koloni Kaybından Etkilenen Türk Arılıklarında Viral ve Paraziter Patojenlerin Rolü 26, 671–677 (2020).


    Google Scholar
     

  • Brown, M. J. F. & Paxton, R. J. The conservation of bees: a global perspective. Apidologie 40, 410–416 (2009).

    Article 

    Google Scholar
     

  • Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Manivanan, P., Rajagopalan, S. & Subbarayalu, M. Studies on authentication of true source of honey using pollen DNA barcoding. J. Entomol. Zool. Stud. 6, 255–261 (2018).


    Google Scholar
     

  • Utzeri, V. J., Ribani, A., Taurisano, V. & Fontanesi, L. Entomological authentication of honey based on a DNA method that distinguishes Apis mellifera mitochondrial C mitotypes: application to honey produced by A. m. ligustica and A. m. carnica. Food Control 134, 108713 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fakhlaei, R. et al. The toxic impact of honey adulteration: a review. Foods https://doi.org/10.3390/foods9111538 (2020).

  • Zhou, X., Taylor, M. P., Salouros, H. & Prasad, S. Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci. Rep. 8, 14639 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Jaafar, M. B. et al. A review on honey adulteration and the available detection approaches. Int. J. Integr. Eng. 12, 125–131 (2020).

    Article 

    Google Scholar
     

  • Soares, S., Amaral, J. S., Oliveira, M. B. P. P. & Mafra, I. A comprehensive review on the main honey authentication issues: production and origin. Compr. Rev. Food Sci. Food Saf. 16, 1072–1100 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaškoniene, V. & Venskutonis, P. R. Floral markers in honey of various botanical and geographic origins: a review. Compr. Rev. Food Sci. Food Saf. 9, 620–634 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sniderman, J. M. K., Matley, K. A., Haberle, S. G. & Cantrill, D. J. Pollen analysis of Australian honey. PLoS ONE 13, e0197545 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balkanska, R., Stefanova, K. & Stoikova – Grigorova, R. Main honey botanical components and techniques for identification: a review. J. Apicultural Res. 59, 852–861 (2020).

    Article 

    Google Scholar
     

  • Prosser, S. W. J. & Hebert, P. D. N. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem. 214, 183–191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobrino-Gregorio, L., Vilanova, S., Prohens, J. & Escriche, I. Detection of honey adulteration by conventional and real-time PCR. Food Control 95, 57–62 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Truong, A. T., Kim, S. & Yoon, B. Determination of honey adulterated with corn syrup by quantitative amplification of maize residual DNA using ultra-rapid real-time PCR. J. Sci. Food Agric. 102, 774–781 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zannat, R. et al. Towards authentication of entomological origin of honey in Bangladesh through molecular and biochemical approaches. J. Agric. Food Res. 12, 100543 (2023).

    CAS 

    Google Scholar
     

  • Utzeri, V. J. et al. Entomological signatures in honey: an environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes. Sci. Rep. 8, 9996 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lannutti, L., Gonzales, F. N., Dus Santos, M. J., Florin-Christensen, M. & Schnittger, L. Molecular detection and differentiation of arthropod, fungal, protozoan, bacterial and viral pathogens of honeybees. Vet. Sci. https://doi.org/10.3390/vetsci9050221 (2022).

  • Ribani, A., Utzeri, V. J., Taurisano, V. & Fontanesi, L. Honey as a source of environmental DNA for the detection and monitoring of honey bee pathogens and parasites. Vet. Sci. https://doi.org/10.3390/vetsci7030113 (2020).

  • Ribani, A., Taurisano, V., Utzeri, V. J. & Fontanesi, L. Honey environmental DNA can be used to detect and monitor honey bee pests: development of methods useful to identify Aethina tumida and Galleria mellonella infestations. Vet. Sci. https://doi.org/10.3390/vetsci9050213 (2022).

  • Salkova, D. et al. Molecular detection of Nosema spp. in honey in Bulgaria. Vet. Sci. https://doi.org/10.3390/vetsci9010010 (2022).

  • Stavropoulou, E. et al. Microbial community structure among honey samples of different pollen origin. Antibiotics https://doi.org/10.3390/antibiotics12010101 (2023).

  • Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Romero, S., Nastasa, A., Chapman, A., Kwong, W. K. & Foster, L. J. The honey bee gut microbiota: strategies for study and characterization. Insect Mol. Biol. 28, 455–472 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. Microbiome 9, 225 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberti, J. et al. The gut microbiota affects the social network of honeybees. Nat. Ecol. Evolut. 6, 1471–1479 (2022).

    Article 

    Google Scholar
     

  • Zhang, Z., Mu, X., Shi, Y. & Zheng, H. Distinct roles of honeybee gut bacteria on host metabolism and neurological processes. Microbiol. Spectr. 10, e0243821 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S. & Moran, N. A. Honey bees as models for gut microbiota research. Lab Anim. (NY) 47, 317–325 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cuesta-Maté, A. et al. Resistance and vulnerability of honeybee (Apis mellifera) gut bacteria to commonly used pesticides. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.717990 (2021).

  • Dosch, C. et al. The gut microbiota can provide viral tolerance in the honey bee. Microorganisms https://doi.org/10.3390/microorganisms9040871 (2021).

  • Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01173-1 (2022).

  • Angulo, V. et al. Plant–microbe eco-evolutionary dynamics in a changing world. N. Phytol. 234, 1919–1928 (2022).

    Article 

    Google Scholar
     

  • Girotti, S. et al. Bioindicators and biomonitoring: honeybees and hive products as pollution impact assessment tools for the Mediterranean area. Eur.-Mediterr. J. Environ. Integr. 5, 62 (2020).

    Article 

    Google Scholar
     

  • Rodney, S. & Purdy, J. Dietary requirements of individual nectar foragers, and colony-level pollen and nectar consumption: a review to support pesticide exposure assessment for honey bees. Apidologie 51, 163–179 (2020).

    Article 

    Google Scholar
     

  • Chabert, S. et al. Rapid measurement of the adult worker population size in honey bees. Ecol. Indic. 122, 107313 (2021).

    Article 

    Google Scholar
     

  • Sanmartín, I. Historical biogeography: evolution in time and space. Evolution 5, 555–568 (2012).


    Google Scholar
     

  • Richardson, D. M. & Whittaker, R. J. Conservation biogeography—foundations, concepts and challenges. Divers. Distrib. 16, 313–320 (2010).

    Article 

    Google Scholar
     

  • Dawson, M. N., Ribas, C. C., Dolby, G. A. & Fritz, S. C. Geogenomics: toward synthesis. J. Biogeogr. 49, 1657–1661 (2022).

    Article 

    Google Scholar
     

  • Ribas, C. C., Fritz, S. C. & Baker, P. A. The challenges and potential of geogenomics for biogeography and conservation in Amazonia. J. Biogeogr. 49, 1839–1847 (2022).

    Article 

    Google Scholar
     

  • de Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 42838 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Saravanan, M., Mohanapriya, G., Laha, R. & Sathishkumar, R. DNA barcoding detects floral origin of Indian honey samples. Genome 62, 341–348 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 12, 2489 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-023-00900-7 (2023).

  • Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cavender-Bares, J., Gamon, J. A. & Townsend, P. A. in Remote Sensing of Plant Biodiversity 1–12 (Springer International Publishing, 2020).

  • Larson, E. R. et al. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18, 194–202 (2020).

    Article 

    Google Scholar
     

  • Thaler, D. S. Is global microbial biodiversity increasing, decreasing, or staying the same? Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2021.565649 (2021).

  • Sivakumar, N., Sathishkumar, R., Selvakumar, G., Shyamkumar, R. & Arjunekumar, K. in Plant Microbiomes for Sustainable Agriculture 113–172 (Springer International Publishing, 2020).

  • Tremblay, É. D. et al. High-resolution biomonitoring of plant pathogens and plant species using metabarcoding of pollen pellet contents collected from a honey bee hive. Environ. DNA 1, 155–175 (2019).

    Article 

    Google Scholar
     

  • Krüger, A., Schäfers, C., Busch, P. & Antranikian, G. Digitalization in microbiology—paving the path to sustainable circular bioeconomy. N. Biotechnol. 59, 88–96 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Al-Waili, N., Salom, K., Al-Ghamdi, A. & Ansari, M. J. Antibiotic, pesticide, and microbial contaminants of honey: human health hazards. Sci. World J. 2012, 930849 (2012).

    Article 

    Google Scholar
     

  • Arpaia, S., Smagghe, G. & Sweet, J. B. Biosafety of bee pollinators in genetically modified agro-ecosystems: Current approach and further development in the EU. Pest Manag. Sci. 77, 2659–2666 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosi, V. & Gadermaier, G. The role of defensins as pollen and food allergens. Curr. Allergy Asthma Rep. 23, 277–285 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jongh, E. J. et al. One Health, One Hive: a scoping review of honey bees, climate change, pollutants, and antimicrobial resistance. PLoS ONE 17, e0242393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodcock, B. A. et al. Neonicotinoid use on cereals and sugar beet is linked to continued low exposure risk in honeybees. Agric. Ecosyst. Environ. 308, 107205 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hénaff, E. et al. Holobiont urbanism: sampling urban beehives reveals cities’ metagenomes. Environ. Microbiome 18, 23 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danko, D. et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 184, 3376–3393.e3317 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velardi, S., Leahy, J., Collum, K., McGuire, J. & Ladenheim, M. “You treat them right, They’ll treat you right”: Understanding beekeepers’ scale management decisions within the context of bee values. J. Rural Stud. 81, 27–36 (2021).

    Article 

    Google Scholar
     

  • Sponsler, D. B. & Bratman, E. Z. Beekeeping in, of or for the city? A socioecological perspective on urban apiculture. People Nat. 3, 550–559 (2021).

    Article 

    Google Scholar
     

  • Angelella, G. M., McCullough, C. T. & O’Rourke, M. E. Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips. Sci. Rep. 11, 3202 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agric. Ecosyst. Environ. 322, 107653 (2021).

    Article 

    Google Scholar
     

  • Flores, F. F., Hilgert, N. I. & Lupo, L. C. Melliferous insects and the uses assigned to their products in the northern Yungas of Salta, Argentina. J. Ethnobiol. Ethnomed. 14, 27 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam, M. K. et al. Australian honeypot ant (Camponotus inflatus) honey—a comprehensive analysis of the physiochemical characteristics, bioactivity, and HPTLC profile of a traditional indigenous Australian food. Molecules https://doi.org/10.3390/molecules27072154 (2022).

  • Rhodes, C. J. Pollinator decline—an ecological calamity in the making? Sci. Prog. 101, 121–160 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sentil, A. et al. Impact of the “Farming With Alternative Pollinators” approach on crop pollinator pollen diet. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2022.824474 (2022).

  • Scheper, J. et al. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proc. Natl Acad. Sci. USA 111, 17552–17557 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wood, T. J., Gibbs, J., Graham, K. K. & Isaacs, R. Narrow pollen diets are associated with declining Midwestern bumble bee species. Ecology 100, e02697 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Creedy, T. J. et al. Coming of age for COI metabarcoding of whole organism community DNA: towards bioinformatic harmonisation. Mol. Ecol. Resour. 22, 847–861 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathiraja, D., Cho, J., Kim, J. & Choi, I.-G. Metabarcoding of eDNA for tracking the floral and geographical origins of bee honey. Food Res. Int. 164, 112413 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giebner, H. et al. Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes. Mol. Ecol. Resour. 20, 1333–1345 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wasimuddin et al. Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Mol. Ecol. Resour. 20, 1558–1571 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, R.-H. et al. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE 13, e0206428 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banchi, E. et al. PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database https://doi.org/10.1093/database/baz155 (2020).

  • Khansaritoreh, E. et al. Employing DNA metabarcoding to determine the geographical origin of honey. Heliyon 6, e05596 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balzan, S. et al. Microbial metabarcoding highlights different bacterial and fungal populations in honey samples from local beekeepers and market in north-eastern Italy. Int. J. Food Microbiol. 334, 108806 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamadzade Namin, S., Kim, M.-J., Son, M. & Jung, C. Honey DNA metabarcoding revealed foraging resource partitioning between Korean native and introduced honey bees (Hymenoptera: Apidae). Sci. Rep. 12, 14394 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bruni, I. et al. A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 170, 308–315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laha, R. C. et al. Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. AMB Express 7, 132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milla, L., Sniderman, K., Lines, R., Mousavi-Derazmahalleh, M. & Encinas-Viso, F. Pollen DNA metabarcoding identifies regional provenance and high plant diversity in Australian honey. Ecol. Evolut. 11, 8683–8698 (2021).

    Article 

    Google Scholar