Search
Close this search box.

The brain of fetuses with congenital diaphragmatic hernia shows signs of hypoxic injury with loss of progenitor cells, neurons, and oligodendrocytes – Scientific Reports

  • Zani, A. et al. Congenital diaphragmatic hernia. Nat. Rev. Dis. Primers 8, 37 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Vogel, M. et al. Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 35, 310–317 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Massolo, A. C. et al. Fetal cardiac dimensions in congenital diaphragmatic hernia: Relationship with gestational age and postnatal outcomes. J. Perinatol. 41, 1651–1659 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Harting, M. T. & Lally, K. P. The congenital diaphragmatic hernia study group registry update. Semin. Fetal Neonatal. Med. 19, 370–375 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Montalva, L., Raffler, G., Riccio, A., Lauriti, G. & Zani, A. Neurodevelopmental impairment in children with congenital diaphragmatic hernia: Not an uncommon complication for survivors. J. Pediatr. Surg. 55, 625–634 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Van der Veeken, L. et al. Prenatal cerebellar growth is altered in congenital diaphragmatic hernia on ultrasound. Prenat. Diagn. 42, 330–337 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Van Mieghem, T. et al. Fetal cerebral blood flow velocities in congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 36, 452–457 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kosiv, K. A. et al. Fetal cerebrovascular impedance is reduced in left congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 57, 386–391 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machado-Rivas, F. et al. Brain growth in fetuses with congenital diaphragmatic hernia. J. Neuroimaging 33, 617–624 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Radhakrishnan, R. et al. Fetal brain morphometry on prenatal magnetic resonance imaging in congenital diaphragmatic hernia. Pediatr. Radiol. 49, 217–223 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Emam, D. et al. Longitudinal MRI evaluation of brain development in fetuses with congenital diaphragmatic hernia around the time of fetal endotracheal occlusion. AJNR Am. J. Neuroradiol. 44, 205–211 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iritani, I. Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat. Embryol. (Berl) 169, 133–139 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montalva, L. & Zani, A. Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr. Surg. Int. 35, 41–61 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Baranger, J. et al. Blood flow imaging with ultrafast doppler. J. Vis. Exp https://doi.org/10.3791/61838 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Baranger, J. et al. Adaptive spatiotemporal SVD clutter filtering for ultrafast doppler imaging using similarity of spatial singular vectors. IEEE Trans. Med. Imaging 37, 1574–1586 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Miyata, S. & Morita, S. A new method for visualization of endothelial cells and extravascular leakage in adult mouse brain using fluorescein isothiocyanate. J. Neurosci. Methods 202, 9–16 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biouss, G. et al. Experimental necrotizing enterocolitis induces neuroinflammation in the neonatal brain. J. Neuroinflammation 16, 97 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsia, C. C., Hyde, D. M., Ochs, M., Weibel, E. R., ATS/ERS Joint Task Force on Quantitative Assessment of Lung Structure. An official research policy statement of the American thoracic society/European respiratory society: Standards for quantitative assessment of lung structure. Am. J. Respir. Crit. Care Med. 181, 394–418 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demene, C. et al. Functional ultrasound imaging of brain activity in human newborns. Sci. Transl. Med. 9, eaah6756 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Baranger, J. et al. Brain perfusion imaging in neonates. Neuroimage Clin. 31, 102756 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chipurupalli, S., Kannan, E., Tergaonkar, V., D’Andrea, R. & Robinson, N. Hypoxia induced ER stress response as an adaptive mechanism in cancer. Int. J. Mol. Sci. 20, 749 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, K. et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 8, 367–376 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, H., Grune, T., Müller, R., Siems, W. G. & Wauer, R. R. Increased levels of lipid peroxidation products malondialdehyde and 4-hydroxynonenal after perinatal hypoxia. Pediatr. Res. 40, 15–20 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Guilbert, T. W., Gebb, S. A. & Shannon, J. M. Lung hypoplasia in the nitrofen model of congenital diaphragmatic hernia occurs early in development. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1159–L1171 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Tuyl, M. et al. Pulmonary surfactant protein A, B, and C mRNA and protein expression in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr. Res. 54, 641–652 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Zhaorigetu, S., Gupta, V. S., Jin, D. & Harting, M. T. Cardiac energy metabolism may play a fundamental role in congenital diaphragmatic hernia-associated ventricular dysfunction. J. Mol. Cell Cardiol. 157, 14–16 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van der Veeken, L. et al. Brain development is altered in rabbit fetuses with congenital diaphragmatic hernia. Prenat. Diagn. 43, 359–369 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Deffieux, T., Demené, C. & Tanter, M. Functional ultrasound imaging: A new imaging modality for neuroscience. Neuroscience 474, 110–121 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montaldo, P. et al. Whole blood gene expression reveals specific transcriptome changes in neonatal encephalopathy. Neonatology 115, 68–76 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maggiotto, L. V., Sondhi, M., Shin, B. C., Garg, M. & Devaskar, S. U. Circulating blood cellular glucose transporters—surrogate biomarkers for neonatal hypoxic-ischemic encephalopathy assessed by novel scoring systems. Mol. Genet. Metab. 127, 166–173 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ream, M., Ray, A. M., Chandra, R. & Chikaraishi, D. M. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R583–R595 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanaan, A., Farahani, R., Douglas, R. M., Lamanna, J. C. & Haddad, G. G. Effect of chronic continuous or intermittent hypoxia and reoxygenation on cerebral capillary density and myelination. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1105–R1114 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boero, J. A., Ascher, J., Arregui, A., Rovainen, C. & Woolsey, T. A. Increased brain capillaries in chronic hypoxia. J. Appl. Physiol. 86, 1211–1219 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harik, S. I., Hritz, M. A. & LaManna, J. C. Hypoxia-induced brain angiogenesis in the adult rat. J. Physiol. 485, 525–530 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. S., Han, J., Bai, H. J. & Kim, K. W. Brain angiogenesis in developmental and pathological processes: Regulation, molecular and cellular communication at the neurovascular interface. FEBS J. 276, 4622–4635 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, A., Dubey, S., Varney, M. L., Dave, B. J. & Singh, R. K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 170, 3369–3376 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broughton, B. R., Reutens, D. C. & Sobey, C. G. Apoptotic mechanisms after cerebral ischemia. Stroke 40, e331–e339 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Haddad, G. G. & Jiang, C. O2 deprivation in the central nervous system: On mechanisms of neuronal response, differential sensitivity and injury. Prog. Neurobiol. 40, 277–318 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleuskens, D. G. et al. Pathophysiology of cerebral hyperperfusion in term neonates with hypoxic-ischemic encephalopathy: A systematic review for future research. Front. Pediatr. 9, 631258 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, S., Harding, R. & Walker, D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int. J. Dev. Neurosci. 29, 551–563 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakovcevski, I. & Zecevic, N. Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49, 480–491 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Yuen, T. J. et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158, 383–396 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, N. T. et al. Creatine supplementation reduces the cerebral oxidative and metabolic stress responses to acute in utero hypoxia in the late-gestation fetal sheep. J. Physiol. 600, 3193–3210 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muccini, A. M. et al. The effects of in utero fetal hypoxia and creatine treatment on mitochondrial function in the late gestation fetal sheep brain. Oxid. Med. Cell Longev. 2022, 3255296 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence, K. M. et al. Chronic intrauterine hypoxia alters neurodevelopment in fetal sheep. J. Thorac. Cardiovasc. Surg. 157, 1982–1991 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence, K. M. et al. Prenatal hypoxemia alters microglial morphology in fetal sheep. J. Thorac. Cardiovasc. Surg. 159, 270–277 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, S. L., Huppi, P. S. & Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 594, 807–823 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham, H. et al. Impact of inhaled nitric oxide on white matter damage in growth-restricted neonatal rats. Pediatr. Res. 77, 563–569 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basilious, A., Yager, J. & Fehlings, M. G. Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: A systematic review. Dev. Med. Child. Neurol. 57, 420–430 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rees, S. & Inder, T. Fetal and neonatal origins of altered brain development. Early Hum. Dev. 81, 753–761 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Byrne, F. A. et al. Severe left diaphragmatic hernia limits size of fetal left heart more than does right diaphragmatic hernia. Ultrasound Obstet. Gynecol. 46, 688–694 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nour, A. L. A. et al. The myocardial capillary network is altered in congenital diaphragmatic hernia in the fetal rabbit model. Braz. J. Med. Biol. Res. 56, e12521 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131, 1313–1323 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, C. J. et al. Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery. Sci. Rep. 7, 15088 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, M. R. et al. Correction of congenital diaphragmatic hernia in utero: VI. Hard-earned lessons. J. Pediatr. Surg. 28, 1411–1418 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deprest, J. A. et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N. Engl. J. Med. 385, 107–118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, F. T., Marini, D., Seed, M. & Sun, L. Maternal hyperoxygenation in congenital heart disease. Transl. Pediatr. 10, 2197–2209 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogan, W. J. et al. Fetal cerebrovascular response to maternal hyperoxygenation in congenital heart disease: Effect of cardiac physiology. Ultrasound Obstet. Gynecol. 57, 769–775 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, W. et al. Hemodynamic responses of the placenta and brain to maternal hyperoxia in fetuses with congenital heart disease by using blood oxygen-level dependent MRI. Radiology 294, 141–148 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Markert, F. & Storch, A. Hyperoxygenation during mid-neurogenesis accelerates cortical development in the fetal mouse brain. Front. Cell Dev. Biol. 10, 732682 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagenführ, L., Meyer, A. K., Braunschweig, L., Marrone, L. & Storch, A. Brain oxygen tension controls the expansion of outer subventricular zone-like basal progenitors in the developing mouse brain. Development 142, 2904–2915 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chand, K., Nano, R., Wixey, J. & Patel, J. Stem cell therapy for neuroprotection in the growth-restricted newborn. Stem Cells Transl. Med. 11, 372–382 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matei, A. C., Antounians, L. & Zani, A. Extracellular vesicles as a potential therapy for neonatal conditions: State of the art and challenges in clinical translation. Pharmaceutics 11, 404 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar